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Background: Age-related losses of muscle mass, strength, and function (sarcopenia) pose significant
threats to physical performance, independence, and quality of life. Nutritional supplementation could
positively influence aspects of sarcopenia and thereby prevent mobility disability.
Objective: To test the hypothesis that a specific oral nutritional supplement can result in improvements in
measures of sarcopenia.
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Design: A multicenter, randomized, controlled, double-blind, 2 parallel-group trial among 380 sarcopenic
primarily independent-living older adults with Short Physical Performance Battery (SPPB; 0e12) scores
between 4 and 9, and a low skeletal muscle mass index. The active group (n ¼ 184) received a vitamin D
and leucine-enriched whey protein nutritional supplement to consume twice daily for 13 weeks. The
control group (n ¼ 196) received an iso-caloric control product to consume twice daily for 13 weeks.
Primary outcomes of handgrip strength and SPPB score, and secondary outcomes of chair-stand test, gait
speed, balance score, and appendicular muscle mass (by DXA) were measured at baseline, week 7, and
week 13 of the intervention.
Results: Handgrip strength and SPPB improved in both groups without significant between-group dif-
ferences. The active group improved more in the chair-stand test compared with the control group,
between-group effect (95% confidence interval): �1.01 seconds (�1.77 to �0.19), P ¼ .018. The active
group gained more appendicular muscle mass than the control group, between-group effect: 0.17 kg
(0.004e0.338), P ¼ .045.
Conclusions: This 13-week intervention of a vitamin D and leucine-enriched whey protein oral nutritional
supplement resulted in improvements in muscle mass and lower-extremity function among sarcopenic
older adults. This study shows proof-of-principle that specific nutritional supplementation alone might
benefit geriatric patients, especially relevant for those who are unable to exercise. These results warrant
further investigations into the role of a specific nutritional supplement as part of a multimodal approach
to prevent adverse outcomes among older adults at risk for disability.
� 2015 AMDA e The Society for Post-Acute and Long-Term Care Medicine. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Preserving physical mobility, function, and ultimately indepen-
dent living is of utmost importance for frail older adults.1 Sarcopenia,
the age-related loss of muscle mass, strength, and function2,3 makes
up a large component of physical frailty.4 It is a strong risk factor for
reduced mobility, events like falls and fractures,5 and is directly
related to rates of hospital and long-term care admissions,6 increased
disability,7 reduced independence, quality of life, and ultimately
resulting in death.8 The onset and progression of sarcopenia is
multidimensional involving physical inactivity, altered metabolism,
neuromuscular deterioration, and marginal nutrient intakes and
absorption.2 The component of marginal nutrient intakes is of fore-
most interest here, because it is a modifiable risk factor of sarcopenia.
Particularly protein, essential amino acids, leucine, and vitamin D
intake are identified as important factors in the management of
sarcopenia.9 Inadequate protein intake [ie, below the recommended
dietary allowance of 0.8 g/kg body weight (BW)/day] as well as
vitamin D status (ie, 25-hydroxyvitamin D < 50 nmol/L) are often
cited as being strongly correlated with lower muscle mass,10,11

physical performance and muscle strength,12,13 and a risk for falls
and fractures.14 Even in the presence of total per-day adequate pro-
tein intake, older adults’ muscle is less sensitive to anabolic stimuli,15

such as resistance exercise16 and mixed meals,17,18 compared with
younger adults, a condition known as “anabolic resistance.”19

Recent recommendations focus on daily protein intakes that
should be at least 1.0 to 1.2 g/kg BW/day for healthy older people, and
1.2 to 1.5 g/kg BW/day for geriatric patients with acute and chronic
diseases.17,20 Further, given the blunted sensitivity of older muscles to
low doses of amino acids, there are indications that dietary protein
should be appropriately distributed to at least 25 to 30 g of high-
quality protein per meal containing approximately 2.5 to 2.8 g of
leucine, to stimulate muscle protein synthesis.17 These concepts of
intake timing, as well as protein quality, are subjects of several recent
studies.21,22 In a recent study, a bolus intake of a leucine-enriched,
whey protein nutritional supplement stimulated acute postprandial
muscle protein synthesis in both healthy and sarcopenic elderly.23

Therefore, we hypothesized that providing a targeted nutritional
supplement containing whey protein, enriched with leucine and
vitamin D in a timely bolus amount, would result in the accretion of
muscle protein and improvements of muscle strength and function
independent of physical exercise among nonmalnourished sarcopenic
older adults at high risk for disability. We explored the efficacy and
safety of this concept compared with an iso-caloric control supple-
ment for improving measures of sarcopenia: lower-extremity
function (Short Physical Performance Battery [SPPB] and its individ-
ual components), muscle strength (handgrip strength), and muscle
mass [appendicular muscle mass by dual X-ray absorptiometry
(DXA)].

Methods

Design and Participants

This was a 13-week, multicenter, randomized, controlled, double-
blind, 2 parallel-group study among noneprotein-energy malnour-
ished older participants with mobility limitations. The study protocol
was approved by institutional review boards at each location and
registered under the Dutch trials register with the identifier:
NTR2329 (http://www.trialregister.nl/trialreg). Study procedures
were performed in accordance with the Declaration of Helsinki
ethical principles for medical research involving human subjects.

Participants were recruited from 18 study centers in 6 European
countries: Belgium, Germany, Ireland, Italy, Sweden, and the United
Kingdom. Older adults (�65 years) were screened for mild to mod-
erate limitations in physical function (SPPB score 4e9), and for low
skeletal muscle mass index [SMI; (skeletal muscle mass/BW * 100)
�37% in men and �28% in women] using bioelectric impedance
analysis (BIA 101; Akern, Florence, Italy)24 because of its feasibility for
an extensive screening process at multiple research sites. Further,
participants were then eligible to participate if they had a body mass
index (BMI) between 20 and 30 kg/m,2 no major cognitive impair-
ment (Mini Mental State Examination score � 25), and were able and
willing to provide informed consent. Potential participants were
excluded if they had comorbidities such as kidney or liver failure,
malignancies over the past 5 years, anemia, or acute inflammation
(C-reactive protein concentration >10 mg/L), or presented with
contraindications for calcium/vitamin D supplementation and/or
were using medication interfering with the nutritional intervention.

Intervention

Participants were randomized to receive either the active or an
iso-caloric control product. The active product contained, per serving,
20 g whey protein, 3 g total leucine, 9 g carbohydrates, 3 g fat, 800 IU
vitamin D, and a mixture of vitamins, minerals, and fibers, whereas
the iso-caloric control product did not contain any protein or
micronutrients, and only carbohydrates, fat, and some trace elements

http://creativecommons.org/licenses/by-nc-nd/4.�0/
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(Supplemental Table 1). Both were delivered as 40 g powder to be
reconstituted with 100 to 150 mL water and consumed twice daily
before breakfast and lunch to provide an adequate bolus of protein in
addition to the meals.

Stratification and Randomization

Permuted block randomization (block size 4) to the active or
control group was stratified for SPPB categories 4 to 6 and 7 to 9 and
study center. The randomization sequence was computer-generated
by a blinded statistician not involved in data collection or analysis.
All investigators, study staff, and participants were blinded to group
allocations, and the randomization code was not broken until
statistical modeling of the primary and secondary outcomes was
complete.

Outcome Measures

Blinded research staff assessed the outcomes during designated
visits at week 7 and 13.

One of the 2 primary outcome measures, handgrip strength, was
measured using a hydraulic hand dynamometer (Jamar; Preston,
Jackson, MO). Two consecutive measures of grip strength in both
hands were recorded to the nearest kilogram with the participant in
an upright position and the arm of the measured hand parallel to the
body. Maximum grip strength was calculated by taking the average of
the highest measurement from both hands.

The other primary outcome measure, SPPB, consisted of the 3
components: gait speed (4-meter walk at a usual pace), chair stand
test (time required to rise 5 consecutive times from a chair without
arm rests), and balance (3 different standing balance tests) according
to the method outlined in Guralnik et al.6 Each component was
scored from 0 (not possible) to 4 (best performance) and summed in a
total score ranging from 0 to 12. The individual outcomes related to
physical function: chair rise test, gait speed, and balance score, were
predefined as separate secondary outcomes.

Other secondary outcomes were appendicular muscle mass (by
DXA) and questionnaires of self-reported physical activity, activities
of daily living, and health-related quality of life. DXA (different
models from Hologic, Bedford, MA, and Lunar, Fairfield, CT) was used
to measure appendicular muscle mass at baseline and week 13.
Central blinded analysis of raw DXA data from all sites was performed
at Vrije Universiteit Brussel, to ensure uniformity in the analysis.

Self-reported amount of physical activity was measured using the
European version of the Physical Activity Scale for the Elderly
(PASE).25 The Barthel index26 measured the level of independence in
activities of daily living with possible scores between 0 and 100
(highest scores best). Health-related quality of life was measured
using the EQ-5D,27 both as an index and as a visual analogue scale
(VAS) between 0 and 100.

Product compliance was measured using self-completed intake
diaries. Adequate compliance was defined as having consumed 10 of
the possible 14 servings per week. Dietary assessment was done at
baseline and week 13 using 3-day prospective diet records for 2
week-days and 1 weekend day. Additional energy and protein intakes
from both supplements were added to the habitual 3-day intakes (ie,
nonsupplementary intake) to assess total intakes.

Fasting glucose and insulin were measured at screening, serum
25-hydroxy-vitamin D and insulinlike growth factor 1 (IGF-1) at
baseline, week 7, and week 13. Safety assessments included the
examination of participant medical history, recording of medication
use, nutritional supplements, and adverse events via telephone calls
throughout the intervention and at each of the visits. Additional
safety assessments were done at the designated visits. These included
monitoring vital signs, gastrointestinal tolerance, evaluating labora-
tory parameters related to liver and renal function, and inflammatory
status.
Statistical Analyses

This study was powered to detect an effect size of 1.9 kg for
handgrip strength28,29 and a 0.5-point difference in SPPB.30 Assuming
an a-value of 0.025, a 2-sided effect, and using the Hochberg principle
for 2 primary outcomes, a sample size of 300 gave 80% power to
observe an effect. Eighty additional participants were randomized
under the guidance of the data monitoring committee following the
blinded interim analysis.

Analyses were performed as intention-to-treat, defined as all
participants randomized, regardless of whether they finished the full
study protocol. Baseline unadjusted means and SDs and week 7 and
week 13 unadjusted mean changes from baseline [medians and in-
terquartile ranges (IQRs) for non-normal data] are presented. A mixed
model for repeated measures (MMRM) was performed including the
baseline value in the outcome vector and fixed factors for treatment
and time (continuous). In this model, the treatment by time inter-
action coefficient estimates the potentially differential change in
outcomes over time between active and control group. No adjust-
ments were made for multiple testing for secondary outcomes due to
the exploratory nature of the study. Continuous variables that were
positively skewed were log-transformed before analysis in the
MMRM. The MMRM for all outcomes included the predefined cov-
ariates baseline protein intake, age, and sex. For 16 participants,
imputation was performed for missing baseline protein intake using
the overall group mean intake. Missing values in outcome variables
were not imputed because mixed models can handle missing data by
maximum likelihood.31 The Mann-Whitney U test was used for cat-
egorical variables that could not be used in the MMRM model.

All statistical analyses were done using SAS software (version 9.4;
SAS, Inc, Cary, NC) according to the predefined statistical analysis
plan. The statistical analyses were repeated by independent statisti-
cians (Julius Centre, Utrecht University), who confirmed the findings.
Results

Between June 30, 2010, and May 30, 2013, 1240 older adults were
screened for participation, 380 of whom were randomized to the
intervention or control groups (Figure 1). After the 13-week inter-
vention, 302 participants completed all 3 study visits (79% comple-
tion rate). Baseline background characteristics were similar in both
groups (Table 1). The mean age of the population at enrolment was
77.7 years, most of whom were women (65%), and living indepen-
dently (87%). All participants had low muscle mass, a mean SPPB
score of 7.5 (Table 2), a mean BMI of 26.1 kg/m2, and were non-
malnourished based on the Mini Nutritional Assessment Short-Form
(99.5%). Intervention compliance was high (median: 93%) from
baseline to follow-up, and did not differ between groups.

There was no significant difference in handgrip strength changes
over time between the control and active groups. Handgrip strength
improved significantly over time in the intervention group (P ¼ .005),
whereas there was likely no time effect in the control group (P ¼ .06).
SPPB scores increased significantly over time in both active and
control groups (P < .001), but with no significant treatment � time
effect (Table 2).

Chair-stand time improved significantly in both groups over time
(P < .001), with a significantly greater improvement in the active
group compared with control (P ¼ .018). Both groups improved
significantly over time in gait speed (P < .001), but the



1240 Assessed for eligibility 

860 Not Included
109 Non-sarcopenic according to BIA 
534 SPPB out of range 
98 BMI out of range 
12 Psychiatric condition
6 Speciϐic medication use
8 Taking vitamin D and/or calcium supplements 
30 Medical condition prohibiting participation 
36 Refused participation 
27 Other 

184 Randomized to receive 

Active product

196 Randomized to receive 

iso-caloric Control product

40 Lost to follow-up at week 13
23 Adverse events
1 Serious adverse event
10 Withdrew consent 
1 Could not be located 
5 Other reasons

38 Lost to follow-up at week 13
22 Adverse events
1 Serious adverse event 
5 Withdrew consent
1 Could not be located 
9 Other reasons

380 

Randomized

23 Lost to follow-up at week 7
13 Adverse events
0 Serious adverse event 
4 Withdrew consent
1 Could not be located 
4 Other reasons
1 missing data

23 Lost to follow-up at week 7
13 Adverse events
0 Serious adverse event 
3 Withdrew consent 
1 Could not be located 
5 Other reasons
1 missing data

184 Included in intention to treat 
analysis for treatment x time effect

196 Included in intention to treat 
analysis for treatment x time effect

Fig. 1. Participant screening, randomization and follow-up.
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treatment � time effect was not significant. Balance scores remained
unchanged both over time and by treatment (Table 2).

The increase in appendicular muscle mass was significantly
greater in the active group than the control group, leading to a mean
estimated difference of 0.17 kg (95% confidence interval [CI]
0.004e0.338) (P ¼ .045) (Figure 2). There was a significant gain over
time in appendicular muscle mass in the active group alone
(P < .001).
No treatment � time effects were observed in the PASE ques-
tionnaire, Barthel index, or quality of life as measured with the
EQ-5D index. There was a significant time effect observed in the
active group in the quality of life EQ-5D VAS score, leading to a trend
for a mean treatment � time effect of 2.5 mm (95% CI �0.17e5.16;
P ¼ .07).

Habitual dietary energy intakes, without supplements, decreased
significantly over time in both groups, whereas supplementation in



Table 1
Baseline Demographic and Clinical Characteristics

Active
n ¼ 184

Control
n ¼ 196

Age, mean (SD), y 77.3 (6.7) 78.1 (7.0)
Sex, female n (%) 120 (65.2) 129 (65.8)
Living situation, n (%)
Institutionalized 18 (9.8) 19 (9.7)
Home care 4 (2.2) 10 (5.1)
Living independently 162 (88.0) 167 (85.2)

Mini Mental State Examination,
median (IQR)

29.0 (27.0e30.0) 29.0 (28.0e30.0)

Hemoglobin concentration,
median (IQR), mmol/L

8.4 (7.9e8.9) 8.5 (8.0e8.9)

BMI, mean (SD), kg/m2 26.0 (2.5) 26.2 (2.8)
Mini Nutritional Assessment Short-Form (MNA-SF), n (%)
Malnutrition 1 (0.5) 1 (0.5)
Risk of malnutrition 15 (8.2) 19 (9.7)
No malnutrition 168 (91.3) 176 (89.8)

Protein intake, median (IQR), g/kg
body weight/day

1.0 (0.9e1.2) 1.0 (0.8e1.2)

Fasting glucose concentration,
median (IQR), mmol/L

5.2 (4.9e5.8) 5.2 (4.9e5.7)

Fasting insulin concentration,
median (IQR), mU/L

9.0 (5.0e13.0) 9.0 (6.0e14.0)

Handgrip strength male,
median (IQR), kg

26.8 (22.0e30.8) 27.1 (22.0e32.1)

<30 kg, n (%) 45 (70.3) 45 (69.2)
Handgrip strength female,
median (IQR), kg

16.5 (13.5e21.5) 16.8 (14.2e20.5)

<20 kg n, (%) 80 (69.6) 94 (74.0)
Gait speed n (%), <0.8 m/s 101 (54.9) 109 (55.6)
SMI (BIA), n (%)
Normal SMI 0 (0) 0 (0)
Class I sarcopenia* 154 (84) 164 (84)
Class II sarcopeniay 30 (16) 32 (16)

Appendicular muscle mass
(DXA), mean (SD), kg

17.9 (4.1) 17.5 (3.8)

BIA, bioelectric impedance analysis; SMI, skeletal muscle mass index; DXA, dual
energy x-ray absorptiometry.

*Class I sarcopenia (skeletal muscle mass, kg/body mass, kg * 100), men: 31%e
37%, women: 22%e28%.

yClass II sarcopenia (skeletal muscle mass, kg/body mass, kg * 100), men: <31%,
women: <22%.
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both groups led to a significant increase in total energy intakes at
week 13 (P < .001).

Habitual protein intakes were not different between groups at
baseline and did not change significantly frombaseline toweek 13, nor
did it differ between groups. Participants in the active group alone
showed an increased total protein intakeatweek13 (P< .001) (Table 3).

At baseline, 25-hydroxyvitamin D concentrations were 50 nmol/L
or lower in 51% and 53% of the participants in the control and active
group, respectively. In the active group, 25-hydroxyvitamin D con-
centrations improved significantly (P < .001) at week 13 (Table 3).
At follow-up, 1 participant in the control group (<1%) and 4 partici-
pants in the active group (3%) showed 25- hydroxyvitamin D
concentrations of 125 nmol/L or higher. There was a significant
time � treatment effect in IGF-1, with an effect size of: 12.6 mg/L (95%
CI 7.4e18.1; P < .001).

Based on (serious) adverse events, gastrointestinal tolerance, and
laboratory parameters, both study products seem safe and the data
do not give rise to any concern. There were no statistically significant
differences in incidence of (serious) adverse events between the
groups (Figure 1).

Discussion

This 13-week specific nutrition intervention among noneprotein-
energy malnourished older adults with mobility limitations did not
lead to significant differences in SPPBorhandgrip strength. Therewere,
however, significant gains in muscle mass and improvements in chair
stand ability in the active group versus control. This suggests that a
vitamin D and leucine-enriched whey protein nutritional supplement,
which stimulated muscle protein synthesis in an acute setting,32,33

could improve measures of sarcopenia over a 3-month intervention.
Exercise should be considered as the standard treatment for

increasing muscle strength and improving physical performance
among adults with sarcopenia.34e36 In this robust trial, however, we
aimed to investigate the isolated effect of a targeted nutritional
intervention. This area has mostly focused on the acute effects on
muscle protein synthesis. Very few longer-term nutritional inter-
vention studies have been performed to assess changes in muscle
mass, strength, and function among older adults at risk for mobility
disability.37 Fiatarone and colleagues38 did not show any effect of a
nutritional supplement alone given for 10 weeks to 100 frail nursing
home residents. In a more recent study in prefrail and frail older
adults (n ¼ 65), Tieland and colleagues39 demonstrated that nutri-
tional supplementation led to improvements in SPPB, but did not
result in differences in muscle mass or strength.

In this study, we selected sarcopenic older adults characterized by
both low muscle mass and function, using a nutritional supplement
specifically targeted for aging muscle. To our knowledge, this is the
only study using nutritional supplementation alone to result in an
increased muscle mass among this population. Adults older than
70 years lose on average 5% to 10% of their muscle mass per dec-
ade.40e42 The approximate gain of 1% total appendicular muscle mass
that we observed after 13 weeks of intervention would translate,
therefore, into saving 1 to 2 years of muscle mass decline.

High habitual protein intake could be correlated with appendicular
muscle mass retention.10 At baseline, habitual protein intakes in both
groups were above the recommended dietary allowance of 0.8 g/kg
per day for adults.43 The active group alone achieved a higher total
protein intake of 1.5 g/kg per day, which is in line with recent
PROT-AGE and European Society for Clinical Nutrition andMetabolism
recommendations for geriatric patients (1.2e1.5 g/kg per day).17,20

Beyond protein quantity, quality and timing of the protein supple-
mentation are also considered crucial determinants for retention of
muscle mass and function.15,17,20 In short-term studies, bolus intake of
whey protein and leucine provided sufficient levels of essential amino
acids, particularly leucine, required to elicit an appropriate acute
muscle protein synthesis response.32,33,44 The leucine-enriched whey
protein blend seems to be an appropriate approach to preservemuscle
mass and function in older sarcopenic adults, possibly through the
timely stimulation of muscle protein synthesis and the anabolic
environment, as suggested by the IGF-1 increase we observed.45

Additionally, serum 25-hydroxyvitamin D concentrations between
60 and 75 nmol/L are suggested to be optimal for lower-extremity
strength, and falls and fracture prevention.46 During the 3-month
supplementation of at least 800 IU daily vitamin D in the active
group, baseline serum 25-hydroxyvitamin D concentrations of me-
dian 48 (IQR 34e66) nmol/L (<50 nmol/L is considered insufficient)
increased by median 25 (IQR 14e39) nmol/L, which resulted in
concentrations within the optimal range.46 Reversing the vitamin D
inadequacies, in combination with leucine and amino acids, could
have contributed to the favorable effect we observed on muscle
parameters.47

This study is not without limitations. Our primary outcome
measurement, handgrip strength, is a well-validated proxy
measurement for lower-body strength,48 but is less sensitive to
intervention changes than other measures of strength. A study
showed that although handgrip and leg-press strength are well-
correlated with each other and with muscle mass, leg strength
showed an intervention effect, whereas handgrip strength did not.49



Table 2
Muscle Strength and Function Outcomes

Mean (SD) Change From Baseline, Mean (SD) Estimated Between-Group
DifferenceMean (95% CI)Active � Control

P*

Baseline Week 7 Week 13

Handgrip strength, kg
Activey 20.9 (7.9) 0.20 (3.2) 0.79 (3.6)z 0.30x (�0.46e1.05) .44
Controlk 20.6 (7.5) 0.34 (2.8) 0.54 (3.2)

SPPB
Active{ 7.5 (1.9) 0.50 (1.26) 0.86 (1.38)** 0.11x (�0.21e0.42) .51
Controlyy 7.5 (2.0) 0.51 (1.21) 0.77 (1.45)**

Chair-stand time, szz

Activexx 17.1 (15.2, 21.2) �1.4 (�3.3e0.4) �2.5 (�4.2 to �0.6)** �1.01x (�1.77 to �0.19) .018
Controlkk 17.6 (14.6, 20.6) �1.0 (�3.0e1.1) �1.2 (�3.3e0.8)**

Balance test{{

Active{ 3.0 (2.0, 4.0) 0.0 (0.0e0.0) 0.0 (0.0e1.0) N.A. .89
Controlyy 3.0 (2.0, 4.0) 0.0 (0.0e1.0) 0.0 (0.0e1.0)

Gait speed, m/s
Active{ 0.8 (0.2) 0.03 (0.11) 0.07 (0.12)** 0.01x (�0.02e0.04) .46
Control*** 0.8 (0.2) 0.03 (0.10) 0.05 (0.12)**

N.A., not applicable; SPPB, Short Physical Performance Battery.
*The P value represents the time � treatment interaction derived from a mixed model (MMRM) adjusting for age, sex, and baseline protein intake.
yBaseline: n ¼ 179, week 7: n ¼ 155, week 13: n ¼ 139.
zP value <.01 derived from MMRM assessing the within-group change from baseline (time effect).
xMMRM: active: n ¼ 144, control: 158.
kBaseline: n ¼ 192, week 7: n ¼ 169, week 13: n ¼ 154.
{Baseline: n ¼ 184, week 7: n ¼ 159, week 13: n ¼ 143.
**P value < .001 derived from MMRM assessing the within-group change from baseline (time effect).
yyBaseline: n ¼ 196, week 7: n ¼ 173, week 13: n ¼ 158.
zzMedian and interquartile range (IQR) presented since data had non-normal distributions. Data were log-transformed to enable a MMRM analysis.
xxBaseline: n ¼ 162, week 7: n ¼ 141, week 13: n ¼ 126.
kkBaseline: n ¼ 170, week 7: n ¼ 152, week 13: n ¼ 138.
{{Median and IQR presented because data were categorical, P value derived from Mann-Whitney test for nonparametric means. The within-group effect of time was not

assessed because the MMRM could not be performed on these categorical data.
***Baseline: n ¼ 196, week 7: n ¼ 172, week 13: n ¼ 158.
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In the other primary outcome measurement, SPPB, we also did not
observe an intervention effect. This is likely explained by the unex-
pected positive and significant time effect both in the intervention
and control groups. Furthermore, the SPPB is by nature a categorical
score, and is less sensitive to changes than a continuous numerical
scale. Although the significant changes in the chair-stand test did not
result in significant differences in the overall SPPB score, the
Fig. 2. Change (kg) in appendicular muscle mass from baseline to week 13 follow-up.
*The raw mean change from baseline to week 13 and SE. The P value represents the
time � treatment interaction derived from a mixed model (MMRM) adjusting for age,
sex, and baseline protein intake.
improvement we observed could be clinically meaningful. The chair-
stand test is a robust measure of lower-extremity function because it
requires lower-body strength, power, and good balance and coordi-
nation.50 Poor chair-stand performance is an independent risk factor
for physical disability, hospitalization, and mortality.51

As such, the sarcopenic screening measures of handgrip strength
and SPPB may not be appropriate outcomes for measuring effects of
sarcopenia interventions. We urge future researchers to carefully
select sensitive and specific outcomes for sarcopenia, such as lower-
extremity strength and function.

Although this study was performed among a robust sample of
independently living older adults with mobility limitations, we could
not include the full spectrum of older adults in the population at
large. Groups such as those recovering from hospitalization and
immobilization might benefit from nutritional supplementation, even
while potentially unable to exercise. Although structured physical
activity programs are not always practical or feasible, and maintain-
ing good compliance is often problematic,52 ideally, this nutrition
intervention would be combined with exercise. A recent study
demonstrated a reduction in major mobility impairment after a long-
term structured physical activity program.36 These interventions,
taken together, address 2 major mediating and reversible factors of
sarcopenia and physical frailty, and have the potential to prolong
mobility, independence, and quality of life.

Conclusion

We present here a 13-week intervention of a vitamin D and
leucine-enriched whey protein oral nutritional supplement that re-
sulted in improvements in muscle mass and lower-extremity function
among sarcopenic older adults. This study shows proof-of-principle
that specific nutritional supplementation alone might benefit geri-
atric patients, especially relevant for those who are unable to



Table 3
Nutritional and Biochemical Outcomes

Median (IQR) Change From Baseline
Median (IQR)

Estimated Between-Group
Difference
Mean (95% CI)
Active � Control

P*

Baseline 13 weeks

Serum 25-hydroxyvitamin D (nmol/L)y

Activez 48.0 (34.0e66.0) 25.0 (14.0e39.0)x 34.2 (29.2e39.6){ <.001
Controlk 49.0 (34.0e65.0) �6.0 (�11.0e0.00)x

Serum IGF-1 (mg/L)y

Active** 113.0 (80.0e145.0) 9.0 (�2.0e23.0)x 12.6 (7.4e18.1){ <.001
Controlk 114.0 (90.0e139.0) �1.5 (�12.0e14.0)

Non-supplementary dietary energy intake (kcal/day)y,yy

Activezz 1698 (1423e2028) �124 (�395e161)xx 31.7 (�52.6e122.5){ .41
Controlkk 1612 (1407e1918) �127 (�372e160)x

Non-supplementary dietary protein intake (g/kg BW/day)y,yy

Activezz 1.0 (0.9e1.2) �0.1 (�0.2e0.1) 0.02 (�0.05e0.09){ .56
Controlkk 1.0 (0.8e1.2) �0.1 (�0.2e0.1)xx

Total dietary energy intake including supplement (kcal/day)yy,{{

Activezz 1698 (1423e2028) 166 (�95e458) N.A. .92
Controlkk 1612 (1407e1918) 165 (�122e463)

Total dietary protein intake including supplement (g/kg BW/day)yy,{{

Activezz 1.0 (0.9e1.2) 0.5 (0.3e0.6) N.A. <.001
Controlkk 1.0 (0.8e1.2) �0.1 (�0.2e0.1)

N.A., not applicable.
*The P value represents the time � treatment interaction derived from a mixed model (MMRM) adjusting for age, sex, and baseline protein intake.
yMedian and IQR presented since data had non-normal distributions. Data were log-transformed to enable a MMRM analysis.
zBaseline: n ¼ 180, week 13: n ¼ 143.
xP value <.001 derived from MMRM assessing the within-group change from baseline (time effect).
kBaseline: n ¼ 191, week 13: n ¼ 157.
{MMRM: active: n ¼ 144, control:158.
**Baseline: n ¼ 182, week 13: n ¼ 143.
yyData calculated based on 3-day dietary intake records, including 1 week day and 1 weekend day on the week of baseline and 13-week follow-up. Energy and nutrient

contributions by the supplement were estimated on an individual level by average reported compliance completed during the week of dietary assessment. This proportion
was multiplied by the nutrient composition of both the active and control supplements and added to the total habitual intakes.

zzBaseline: n ¼ 176, week 13: n ¼ 138.
xxP value <.05 derived from MMRM assessing the within-group change from baseline (time effect).
kkBaseline: n ¼ 188, week 13: n ¼ 152.
{{Median and IQR presented because data had non-normal distributions. P value derived from Mann-Whitney test for nonparametric means. Within-group effect of time

was not assessed because the MMRM was not performed on these data.
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exercise. These results warrant further investigations into the role of a
specific nutritional supplement as part of a multimodal approach to
prevent adverse outcomes among older adults at risk for disability.
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