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Models of the cost-effectiveness of pharmaceutical interventions for the treatment of osteoporosis have traditionally
adopted cohort-based approaches. We present a transition-state model to simulate the experience of individual patients,
allowing the full patient history and residential status to influence the probabilities of future fractures at the hip, spine,
wrist or proximal humerus. Alongside epidemiological data, we used systematic literature reviews of costs, utilities and
efficacy to populate the model for a UK setting. We established a statistical relationship between the inputs and outputs
of the individual patient model creating a near instantaneous emulation of the individual patient model. We undertook
extensive sensitivity analyses to analyse the uncertainty in the estimated incremental cost per quality-adjusted life year
due to uncertainty in the efficacy of the drugs. We provide illustrative results accompanied by individual and multi-
interventional cost-effectiveness acceptability curves.
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Introduction

Osteoporosis is a systemic skeletal disease characterized by

low bone mass and micro-architectural deterioration of bone

tissue with a subsequent increase in bone fragility and

susceptibility to fracture.1 It is operationally defined by bone

mineral density at the hip measured by dual energy X-ray

absorptiometry and diagnosed in women by the finding of a

t-score of �2.5 standard deviations or lower.2 A t-score is
defined as the number of standard deviations from the

average bone mineral density of young healthy women.

Women with osteoporosis and a previous fragility fracture

are denoted as suffering from established osteoporosis. The

most serious clinical consequences of osteoporosis are hip

fractures that increase in incidence exponentially with age

and incur high morbidity, mortality and health-care

expenditure. Other common osteoporotic fractures occur

at the spine, forearm, and shoulder.

In the UK, the recent establishment of the National

Institute for Clinical Excellence (NICE) reflects the Govern-

ment’s commitment to investigating cost-effectiveness along-

side clinical effectiveness for drugs and other interventions in

order to make efficient use of scarce health-care resources.3

Many agents of widely different efficacy and cost are now

available for the treatment of osteoporosis with an estimated

d1030 million spent annually in the UK in treating

osteoporotic fractures in women aged 50 years or over.4

Accordingly NICE commissioned us to review treatments

for osteoporosis in post-menopausal women and place them

in a health economic perspective. We calculated results for

women aged 50, 60, 70 and 80 years, with and without an

assumed prior fracture. Our results formed the basis of the

NICE final appraisal document.5

Methods

Standard measures of cost-effectiveness in health care
modelling

An influential approach to the assessment of cost-effective-

ness has been to compare interventions in terms of their

incremental cost per ‘quality-adjusted life year’ (QALYs).6

The QALY combines increased life expectancy and im-

provements in health status by assigning to each period of

time a utility ranging from 0 to 1, corresponding to the

health-related quality during that period, where a utility of 1

corresponds to optimal health, and a weight of 0 corre-

sponds to a health state judged to be equivalent to death.7

The QALY approach thus ‘quality adjusts’ survival. A

person expected to survive 10 years at a quality of 0.8 has
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eight QALYs. The benefits of a treatment that increases

survival at a utility of 0.8 (from 10 to 20 years) or improves

the quality of the 10 years (from 0.8 to 0.9) can be valued in

terms of the QALY gain (ie gains of eight and one,

respectively).

Theoretically, the cost per QALY of all treatments in all

disease areas for all potential patient groups would be

calculated, and the optimal allocation of resources selected

in order to maximize societal QALYs given a fixed budget (ie

a constrained optimization problem).8 However, there is

insufficient data to do this and decision makers instead use

an arbitrary cost per QALY threshold that represents value

for money. It has been hypothesized that historically NICE

has set this value at around d30000 per QALY gained.9

Cost per QALY output from sensitivity analyses can be

expressed as cost-effectiveness acceptability curves

(CEAC).10 The simplest form of a cost-effectiveness accept-

ability curve compares one intervention to another (typically

a no treatment option), where a line denotes the proportion

of times within the simulations that an intervention is

estimated to have a cost per QALY ratio better than a given

threshold value. This allows decision makers to visualize the

likely range in the cost per QALY estimates and predict the

likelihood of achieving a selection of cost per QALY

thresholds. Where the line crosses the y-axis, the intervention

dominates the comparator, as it produces a cost saving and

increases societal health. The proportion of times that the

intervention is dominated by the comparator, where less

health is achieved at a cost, is signified by the difference

between 1 and the value of the line when the cost per QALY

threshold is equal to infinity.

More complex cost-effectiveness acceptability curves

incorporate a number of interventions simultaneously and

display the probability that each treatment is the optimal

intervention at a given cost per QALY threshold.11 Optimal

interventions are calculated by ranking them in order of

ascending health gain and initially comparing the two least

effective treatments. If the incremental cost per QALY

between the more effective treatment and the lesser one is

below the cost per QALY threshold, the more effective

treatment is selected as optimal. Similar comparisons are

then iteratively conducted between the current optimal

treatment and the next most efficacious treatment, until

the list is exhausted, and the optimal treatment found.

The structure of the model

We constructed a patient-based transition-state model, with

time slices of 1 year, in Microsoft Excel (rMicrosoft

Corporation). Four fracture sites were incorporated: hip,

wrist, spine and proximal humerus and two extra-skeletal

conditions, breast cancer and coronary heart disease, due to

the effects of some osteoporosis interventions on the

incidences of these diseases. These transition states will be

collectively referred to as events. We also added a further

transition state denoting no event occurring in the year.

Absorption states, which cannot be exited, were included for

death through natural causes and for death following hip

fracture, breast cancer or coronary heart disease.

The modelling methodology is similar to that described by

Eastman et al12 with individual patients being simulated.

The model is updated annually, with the probability of each

event occurring in the next time period calculated at the start

of the year, based on epidemiological data, patient fracture

history and residential status. The risks of events were

further adjusted for the assumed efficacy of any treatment

for osteoporosis. For example, where a treatment was shown

to reduce the rate of hip fracture by 50%, the risks of

suffering a hip fracture would be halved during the period

that treatment was taken.

Having calculated transition probabilities for each event,

these events were cumulatively proportioned across a 0–1

interval. We then drew a random number using the standard

random number generator in Excel to determine which

event, if any, would occur in the forthcoming year. The

simulation of events occurring in the next annum is repeated

until a time horizon of 10 years was reached or the patient

had died. Due to problems in Excel, the random numbers

were unseeded in all simulations.

The model structure is depicted in Figure 1. The outputs

were costs due to events, QALYs accrued, number of years

of pharmaceutical treatment, number of GP consultations

and number of bone mineral density scans performed. Based

on UK guidance at the time, we discounted costs and

QALYs at 6 and 1.5%, respectively.13

An event-specific cost and a utility multiplier were

incurred on entering each transition state. However, costs

and utility detriments persist beyond the 1-year time period.

We used Boolean variables within the model to monitor the

presence of prior events and residential status allowing

ongoing costs and quality of life decrements related to

previous events to be considered regardless of the current

transition state. We assumed utility was multiplicative; thus

a woman who had suffered two separate events with a

multiplier of 0.8 would be expected to be at 0.64 (the average

utility for that age). This approach does not allow utility to

fall below zero and assumes that a fracture would produce

more disutility in women who were healthier at the time of

the event. Costs were assumed to be additive.

The simulated costs incurred and QALYs gained by the

patient in the current time period were calculated and an

aggregated total produced at the end of the modelling

horizon. Although the model simulates individual patients,

decision makers are more interested in the results for a

cohort of patients with similar characteristics. Aggregating

data relating to a large number of individual patients

produces such results.

We used a time horizon of 10 years for the model as

health-care interventions may alter significantly in the future.

However, the QALYs accrued beyond the 10-year period
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must be considered for the additional survivors associated

with treatment. We assumed that patients alive at the end of

the modelling horizon would have a mortality rate equal to

that of an age- and sex-matched population.14 This resulted

in an additional 10.5, 5.8, 2.3 and 0.3 QALYs for each

additional patient alive that entered the model at 50, 60, 70

and 80 years of age, respectively. We added the expected

QALYs gained due to lower mortality rates to the QALYs

produced by the individual patient model to produce the

total QALY gain.

Data used within the model

A detailed account of the epidemiological, cost and utility

data used within the model is provided elsewhere;15 however,

we provide a summary of cost and QALY data in Tables 1

and 2. All prices have been inflated to 2001/2002 prices.16,17

We undertook a systematic review of all randomized

controlled trials (RCTs) of drugs that used fracture data to

measure the clinical efficacy of interventions in patients with

osteoporosis. Full details of the methodology used, including

the search terms, quality scores, and databases interrogated,

are provided elsewhere.15 There is a paucity of RCTs of

oestrogen in osteoporotic women as it was prescribed before

the need to prove efficacy in such a manner. We therefore

allowed fracture evidence for oestrogen from women with-

out osteoporosis to be considered in a sensitivity analysis.

We undertook meta-analyses and the relative risks

associated with a selection of interventions are given in

Table 3. These risks represent the likelihood of a fracture

relative to receiving no treatment, that is, a relative risk of

0.8 would mean that a patient on treatment would be 20%

less likely to suffer a fracture. We assumed an offset time,

defined as the length of time following cessation of treatment

until the relative risk returns to 1, of 5 years for all

treatments analysed. We assumed a linear decay in efficacy

during this period.

First- and second-order uncertainty

A stochastic individual patient approach introduces first-

order uncertainty, that is, variation in output from the same

input parameters solely due to the random numbers

sampled. Second-order uncertainty is the uncertainty around

the true parameter values, for example, the efficacy of

alendronate in preventing hip fractures. First-order uncer-

tainty can be virtually eliminated by simulating an arbitrarily

large number of patients.10 For patients with a prior

Time Tx   Time Tx + 1 

Logical Constraints:

p1 = 1- p2-p3-p4-p5-p6-p7-p8 p9 + p10 = p2 p15 + p16 = p9

p11 + p12 = p6 p13 + p14 = p7 

(p1) No Event

(p2) Hip Fracture

(p3) Vertebral Fracture 

(p5) Wrist Fracture 

(p4)  Proximal Humerus Fracture

(p7)  Coronary Heart
Disease  

(p6)  Breast Cancer 

(p9) Non-Fatal
Hip Fracture 

(p10) Fatal Hip Fracture  

(p11)  Non-Fatal Breast Cancer  

(p12)  Fatal Breast Cancer  

(p13)Non-Fatal Coronary Heart 
Disease

(p14)  Fatal Coronary Heart 
Disease(p8)  Death (excluding

through Hip Fracture, 
Breast Cancer and 
Coronary Heart Disease) 

(p15) Resides in
nursing home

(p16) Resides in
the community  

Figure 1 The transition states included in the model. The exact values of p2 : p14 will be determined by the patient age, patient
history regarding the presence of previous fracture at each site, and the residential status of the patient. These probabilities are
calculated for each individual at the beginning of each year. The cycle is repeated for all non-absorbing states until the time horizon is
reached.
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Table 1 Utility data used in the model

Utility multiplier Source data

State 1st Year Subsequent years State
Hip fracture 0.830 0.925 Murray et al18

Hip fracture leading to nursing home entry 0.400 0.400 National osteoporosis foundation19

Death due to hip fracture * 0.000 —
Vertebral fracture 0.830 0.930 Oleksik et al20

Wrist fracture 0.981 1.000 Dolan et al21

Proximal humerus fracture 0.794 0.973 Kanis et al22

Non-fatal breast cancer 0.620 0.620 Hutton et al23

Fatal breast cancer w 0.000 —
Non-fatal CHD 0.850 0.850 Kanis et al24

Fatal CHD * 0.000 —
Death by other causes * 0.000 —

Baseline population utility: age 50 years¼ 0.850, age 60 years¼ 0.829, age 70 years¼ 0.747, age 80 years¼ 0.699.
*This value has been set to half the utility in the previous year to simulate the death occurring midway through the time period.
wData on breast cancer mortality showed that the median time before death was approximately 2 years. We incorporated this by doubling the QALYs
value in the previous year for the patient in the year of death.

Table 2 Cost data used in the model

Age 50 costs (d) Age 60 costs (d) Age 70 costs (d) Age 80 costs (d)

State
1st year
costs

Subsequent
annual costs

1st year
costs

Subsequent
annual costs

1st year
costs

Subsequent
annual costs

1st year
costs

Subsequent
annual costs

Hip fracture 4880 — 4880 — 6139 — 8080 —
Hip fracture leading to
nursing home entry

29 620 22 298 29620 22 298 30 857 22 940 32 795 23 997

Death due to hip fracture 8666 * 8666 * 8666 * 8666 *
Vertebral fracture 451 210 451 210 510 210 550 210
Wrist fracture 340 — 340 — 340 — 554 —
Proximal humerus fracture 969 — 969 — 969 — 1584 —
Non-fatal breast cancer 8541 — 8541 — 8541 — 8541 —
Fatal breast cancer 10 981 w 10981 w 10 981 w 10 981 w

Non-fatal CHD 2058 665 2058 665 2058 665 2058 665
Fatal CHD 2160 * 2160 * 2160 * 2160 *
Death by other causes 0 * 0 * 0 * 0 *

The methodology and sources for calculating costs in the initial and subsequent years for each age group is presented in Kanis et al.24

*This value has been set to half the ongoing costs in the previous year to simulate the death occurring midway through the time period.
wData on breast cancer mortality showed that the median time before death was approximately 2 years. We incorporated this by doubling the on going
cost in the previous year for the patient in the year of death.

Table 3 The assumed efficacy of the interventions on fracture risk, coronary heart disease event and breast cancer events

Relative risk (95% CI)

Cost of
intervention
(d)

Grade of
evidence* Spine Hip Wrist

Proximal
humerus Breast cancer

Coronary
heart
disease

Alendronate 301 A2 0.53 (0.42–0.67) 0.46 (0.23–0.91) 0.48 (0.31–0.75)
Etidronate 163 A1 0.40 (0.20–0.83)
Risedronate 284 A1 0.63 (0.51–0.78) 0.60 (0.42–0.88) 0.68 (0.43–1.08) 0.46 (0.23–0.94)
Raloxifene 257 A2 0.65 (0.53–0.79) 0.38 (0.24–0.58)
Oestrogen A 58 A1 0.58 (0.26–1.30) 1.27 (1.02–1.56)
Oestrogen B 58 A3 0.58 (0.26–1.30) 0.86 (0.42–1.75) 0.32 (0.13–0.78) 0.63 (0.45–0.89) 1.27 (1.02–1.56)

*Grading system: A1, Evidence from RCTs in women with established osteoporosis; A2, Evidence from RCTs in women with either established
osteoporosis or osteoporosis; A3, Evidence from RCTs in women unselected for bone density.
Blank cells denote that no effect is assumed.
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fracture, we simulated 8000 patients, which reduced the

standard error of the mean to around to approximately

0.3% for QALYs and 4% for costs of the respective mean

values. For patients without a prior fracture, the number of

patients required to maintain similar ratios rose to 15000

due to the lower absolute risk of fracture. These numbers

required an approximate processing time per simulation of

50min, and 90min, respectively, on a machine containing a

2.0GHz Athlon Thunderbird processor with 256mB RAM

running Windows 2000 (rMicrosoft Corporation).

Once first-order uncertainty is minimized, analyses of

second-order uncertainty can be undertaken. These results

are most appropriate for NICE as they describe the range of

cost per QALY values produced by the current uncertainty

in the efficacy of the drugs. Simulating a large number of

patients cannot eliminate second-order uncertainty, how-

ever, as it reflects inherent gaps in the knowledge base.25

We confined analyses of second-order uncertainty to the

efficacy values (the six relative risks presented in Table 3) for

each treatment. The values of the remaining parameters such

as utility and costs were held constant at their mean values.

Uncertainty in the efficacy data was large in this case study

with wide confidence intervals around the relative risk of

fracture for each intervention. Such variations around the

central estimate, particularly when modelling up to six

independent relative risks, necessitate that extensive sensi-

tivity analyses be undertaken. We assumed that 1000 runs of

the individual patient model would be sufficient to

adequately describe the distribution in the cost per QALY

ratios caused by uncertainty in the efficacy data for each

intervention.

In all, 1000 sets of six random numbers were drawn and

these were used to sample from the distribution of relative

risks for each intervention (Table 3). This approach reduces

bias by removing the possibility that a treatment produces

better results as an artefact of the random numbers selected.

We could not use the individual patient model to calculate

directly the results due to the time constraints of the project.

This problem is common when using complex individual

patient simulation models and, typically, lengthy running

times have prohibited the conduct of full and adequate

sensitivity analyses.

To resolve this problem we used a methodology based on

Gaussian process regression, which is described in detail

elsewhere.26 Gaussian process regression is a non-parametric

regression technique. It is assumed that the input–output

relationship in the patient simulation model is described by a

smooth, continuous function, but no other assumptions

about the nature of the function (eg regarding linearity, the

presence/absence of interactions) are made. As values of the

model output at different input values are obtained, the

Gaussian process model ‘learns’ the input–output relation-

ship and can then be used as a fast approximation. We

derived the approximation using a relatively small number

(200) of individual patient model runs. It was then possible

to predict the output of the model at any set of input values

almost instantaneously. By withholding each data point in

turn and fitting a Gaussian model to the remaining 199

values, we estimated the accuracy of the statistical relation-

ship. We then compared the output values predicted by each

Gaussian model, with the ‘true’ output from the individual

patient model. The approximation was seen to be good

(Figure 2).

We produced cost per QALY ratios compared with no

treatment (where all relative risks were equal to 1) for each

treatment for each of the 1000 sampled sets of relative risks.

The mean cost per QALY was provided by dividing the

aggregated incremental costs by the aggregated incremental

QALYs. We calculated a 95% credible interval by ranking

the 1000 samples in order of cost-effectiveness and noting

the 25th and 975th values.

Results

We provide illustrative results for those treatments

most commonly prescribed: bisphosphonates (alendronate,

etidronate and risedronate), selective oestrogen-receptor

modulators (raloxifene) and oestrogen (assumed generic)

for women aged 70 years with established osteoporosis

(Table 4). The full results are presented elsewhere.15 It is seen

that both alendronate and risedronate had mean cost per

QALY values below d25 000. The cost-effectiveness ratios

for all interventions have wide confidence intervals due to

the large uncertainty in the efficacy data. Due to the adverse

effects on breast cancer, the confidence interval for oestrogen

includes the possibility of incurring costs while reducing

health.
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Figure 2 Demonstrating the accuracy of the Gaussian process
emulator in predicting the output from the individual patient
model.
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The uncertainties in the mean cost per QALY values for

alendronate and oestrogen (incorporating observational

data) are displayed in the cost-effectiveness acceptability

curves shown in Figures 3 and 4. It is seen that, in patients

with established osteoporosis, alendronate is 90% likely to

have a cost per QALY value below d30 000 and is very

unlikely to have a cost per QALY above d60 000. Oestrogen

has a 30% probability of having a cost per QALY below

d30000, but has a 35% chance of having a cost-effectiveness

ratio above d100 000 or worse.

A multi-interventional CEAC is presented in Figure 5,

with the omission of etidronate, raloxifene and oestrogen, as

the probability of these interventions being optimal was less

than 5% at all cost per QALY thresholds. It is seen that at

all cost per QALY thresholds above d30 000 it was always

optimal to treat with alendronate or risedronate.

Although the results from this analysis appear to favour

alendronate over risedronate and etidronate the NICE

committee were reluctant to differentiate between these

interventions in their guidance (section 4.3.5).5 Their reasons

were based on the fact that no head-to-head trials had been

conducted, that the trials on which these data are based

differ in some respects including the type of patients

involved, that the interventions had different tolerability

profiles and that the etidronate trials were not powered to

detect a significant reduction in hip fracture rates.

Discussion

An overview of the differences between Markov and

individual patient-based models is given in Briggs27 with

an example provided where both methodologies give similar

mean answers. However, in this case study, we had reasons

for believing the answers may be substantially different.

(1) It has been proven that suffering a prior fracture greatly

increases the risk of future fractures, even when adjusted

for bone mineral density.28 For example, the risk of

a subsequent vertebral fracture following an initial

vertebral fracture is 4.4 times greater than that without

a prior fracture. This value is 2.5 were the first fracture at

the hip.
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Figure 3 The CEAC for alendronate in women aged 70 years
with established osteoporosis and a t-score of �2.5 standard
deviations.

Table 4 The incremental costs and QALYs of each
intervention compared to no treatment for 100 women
aged 70 years with established osteoporosis and t-scores

of �2.5 standard deviations

Increase in
cost compared
to no

treatment per
100 patients
(d000)

Increase in
QALY

compared to
no treatment
per 100
patients

Mean cost
per QALY
(d000)

Alendronate 95 5.61 17 (10–44)
Etidronate 89 3.01 30 (23–48)
Risedronate 104 4.71 22 (14–43)
Raloxifene 128 4.26 30 (24–41)
Oestrogen A 51 0.74 70 (15–D-ed)
Oestrogen B 38 1.56 25 (D-ing–D-ed)

Numbers in parentheses indicate 95% confidence intervals estimated
using a percentile method from 1000 samples.
D-ing represents dominating (costing less and increasing health).
D-ed represents dominated (costing more and reducing health).
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(2) The costs and health detriment following a fracture

persist and these relationships need to be incorporated

into the model.15

(3) The residential status of the patient needs to be

modelled, as there are high costs and utility detriments

associated with nursing home care. Also the risk of

mortality following a hip fracture has been shown to

differ between those living in the community and those

in nursing homes.29

(4) We anticipated (incorrectly) that data on the interactions

between variables would be found. For example, the

subsequent cost or health detriment of a hip fracture

may depend on whether a prior vertebral fracture had

been suffered, or the elevated risks for subsequent

fractures may depend on the time since a previous

fracture. It is expected that these relationships will

become known in future years. For the above reasons,

we must record for each patient, whether any prior

fractures have occurred, and if so, when and at which

site. These are routinely recorded in an individual

patient model.

Such a methodology could theoretically be replicated in

cohort models by employing a very large number of

transition states. Assuming no deaths, were six conditions

and a no-event state to be modelled, it would require 710 (282

million) transition states by year 10. This number would be

doubled were the residential status of the patient also

recorded. Accordingly, the cohort model introduces simpli-

fications that can affect the accuracy of the results. The

potential gain in accuracy through applying an individual

patient methodology results is not known as results

produced by an individual patient methodology and those

produced by a standard cohort methodology have not been

compared. It is acknowledged that all models are dependent

on the quality of the available data and, while the individual

patient approach should theoretically produce more accu-

rate results, the inaccuracy of the cohort methodology may

be relatively small compared with the sensitivity of both sets

of results to variables where there is large uncertainty.

Further research is needed to calibrate the differences in

cost-effectiveness ratios expected via an individual patient

methodology compared with a cohort model, given a known

data set.

We chose a time-slice methodology rather than a discrete

event simulation approach due to fewer random numbers

being required. The time slice approach requires a maximum

of 10 random numbers to be sampled per patient. Discrete

event simulation would require a number from 7 random

number streams to calculate the next event to occur from the

four fractures, breast cancer, coronary heart disease and

death through other causes), and then further samples from

the seven streams each time an event occurs.

The annual time slice prohibits more than one event

occurring each year. However, due to the relative small

chance of a fracture (o4% per annum at age 70) the period

of 1 year seemed appropriate, and the results are unlikely to

change with a move to shorter time slices.

We conducted analyses using data for costs and utilities

fixed at their means. Scarce data were available on costs;

however, the uncertainty in the utility values was reasonably

well described. We conducted extreme value sensitivity

analyses for hip, vertebral fracture and proximal humerus

assuming that the upper and lower 95% confidence intervals

reported by Murray et al18 for hip fracture were applicable

to all three fractures. These were 0.72 in the initial year and

0.81 in subsequent years assuming high detriments, and 0.96

and 1.00, respectively, assuming low detriments. This

changed the mean cost per QALY for alendronate at age

70 to d11424 assuming high detriments and d30 254

assuming low detriments. Probabilistic sensitivity analyses

over the full range of the utility distribution rarely changed

the cost-effectiveness rankings of the interventions or

affected whether the cost per QALY rose above the assumed

d30000 threshold for cost-effectiveness.

While some parameters, such as t-score and epidemio-

logical data, are assumed to be constant within each

scenario, the effects of changing these variables can be

estimated by adjusting the relative risks for both no-

treatment and a treatment scenario. For example, an

estimate of cost-effectiveness assuming double the risk of

hip fracture (either through a lower t-score or due to new

epidemiological data becoming available) can be obtained by

using a relative risk of 2 for hip for no treatment, and

doubling the sampled relative risk of hip fracture for

treatment. This approach would however introduce slight

inaccuracies within the offset period, whereas the relative

risk would be assumed to be returning to 1, with both the

intervention and no treatment underestimating the number

of fractures suffered. Similarly, near the conclusion of the

project, data became available on the risk of mortality due to

vertebral or proximal humerus fracture. Approximations of

these effects were included using a cohort methodology as

there was insufficient time to construct new Gaussian

models. Our research showed that these approximations do

not significantly change the cost-effectiveness results pro-

duced. Changing some variables, however, such as the

discount rate would require a new batch of individual

patient models to be run and new Gaussian models

formulated using this data.

Due to resource restrictions, we modelled only four age

groups (50, 60, 70 and 80 years old) and female patients.

Despite these limitations, this initial work was able to

address important policy questions about which treatments

are cost-effective for scenarios of interest. The meta-model

can also quickly calculate cost-effectiveness ratios when new

efficacy data become available for existing drugs, when

new treatments for osteoporosis are developed, or where new

estimates of the costs and utility values become available.
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Conclusion

Previous models to determine the cost-effectiveness of

treatments for osteoporosis have used cohort-based ap-

proaches. They have inherent weaknesses that can be

overcome in an individual patient structure such as that

presented. Our approach outlines a methodology for

calculating the cost-effectiveness of osteoporosis treatments

that allows the accuracy of results produced by an individual

patient-based simulation to be maintained, while facilitating

extensive sensitivity analyses. The modelling approach has

had applications in the real world, forming the basis of an

academic review for NICE and has been highly influential in

developing the guidance issued.
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