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Abstract

Background: Osteoporosis, characterized by loss of bone mineral density (BMD), is underscreened. Osteoporosis and low bone mass
are diagnosed by a BMD T-score < —2.5, and between —1.0 and —2.5, respectively, at the femoral neck or lumbar vertebrae (L1-4),
using dual energy x-ray absorptiometry (DXA). The ability to estimate BMD at those anatomic sites from standard radiographs would
enable opportunistic screening of low BMD (T-score < —1) in individuals undergoing x-ray for any clinical indication.

Methods: Radiographs of the lumbar spine, thoracic spine, chest, pelvis, hand, and knee, with a paired DXA acquired within 1 year,
were obtained from community imaging centers (62,023 x-ray—DXA pairs of patients). A software program called Rho was developed
that uses x-ray, age, and sex as inputs, and outputs a score of 1 to 10 that corresponds with the likelihood of low BMD. The program’s
performance was assessed using receiver-operating characteristic analyses in three independent test sets, as follows: patients from
community imaging centers (7 = 3,729; 83% female); patients in the Canadian Multicentre Osteoporosis Study (z = 1,780; 71%
female); and patients in the Osteoarthritis Initiative (7 = 591; 50% female).

Results: The areas under the receiver-operating characteristic curves were 0.89 (0.87-0.90), 0.87 (0.85-0.88), and 0.82 (0.79-0.85),
respectively, and subset analyses showed similar results for each sex, body part, and race.

Conclusion: Rho can opportunistically screen patients at risk of low BMD (at femoral neck or L1-4) from radiographs of the lumbar
spine, thoracic spine, chest, pelvis, hand, or knee.
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INTRODUCTION
Osteoporosis, a disease characterized by the loss of bone
mineral density (BMD), affects 200 million lives globally [1].

Its prevalence in the United States, in men and women aged
50 years and older, is 15% and 4%, respectively, and with the
aging population, its incidence and prevalence are rising [2].
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Visual Abstract

Can a machine learning algorithm (Rho) identify individuals with low bone

mineral density (BMD) from x-rays taken for any clinical indication?

Despite its prevalence, screening for
osteoporosis remains underutilized.
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typically diagnosed
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on dual energy x-ray
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low BMD

Rho can help identify individuals at-risk of low BMD from standard x-rays

of various body parts, creating new opportunities for early prevention and intervention.

In their lifetime, up to 50% of women and 22% of men will
suffer an osteoporotic fracture [3]. Of patients who suffer an
osteoporotic hip fracture, almost one-third die within 1 year
[4]. Currently, to identify those at risk, a clinician conducts a
clinical fracture risk assessment, and if appropriate, refers a
patient for dual-energy x-ray absorptiometry (DXA) for
diagnosis. The US Preventive Services Task Force recom-
mends BMD testing by DXA for women aged 65 and older,
and for younger women with certain clinical risk factors [5],
but screening rates are low, and osteoporosis is
underdiagnosed [6]. Among women who are privately
insured, fewer than 25% of those eligible are screened [7].

The

recommendation for screening for men [5], and thus,

US Preventive Services Task Force makes no
men’s screening rates are also low [8]. In Canada, DXA is
indicated for women and men aged 65 and older, and for
younger adults with clinical risk factors for fracture,
including those found to have low bone density on
radiograph [9]. Both lifestyle and pharmacologic therapy
are available for prevention and treatment.

Deep convolutional neural networks have been trained by
multiple research groups to learn the complex features of bone
and soft tissue attenuation used to estimate BMD and T-score
from standard x-rays [10-13]. Health Canada recently licensed
Rho (16 Bit, Toronto, Canada), a machine learning—based
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opportunistic prescreener for low BMD, as a class II
software-as-a-medical device, and it is commercially available in
Canada. A regulatory submission is under review by the FDA;
Rho is not available for sale in the United States. When
installed on an institution’s network, Rho connects to the
PACS by leveraging the DICOM standard. Rho automatically
detects, downloads, and analyzes eligible x-rays (defined as
frontal x-rays of the chest, lumbar spine, thoracic spine, pelvis,
hand, or knee in patients aged 50 years or older) as soon as they
are acquired. Rho generates a score from 1 to 10; the higher the
score, the higher the likelihood that the patient has low BMD
(defined as a DXA T-score < —1 at L1-4 or femoral neck
[EN]). The Rho score is included in a one-page report that is
automatically sent back to the PACS and is directly viewable
by radiologists in their existing clinical workflow at the time
of x-ray reporting. Radiologists can choose to include Rho’s
finding in their report if the patient has a high likelihood of
having low BMD. Inclusion of such a finding could prompt
the referring physician to conduct a clinical fracture risk
assessment, and if necessary, refer the patient for DXA BMD
analysis. By initiating a fracture risk assessment, Rho could
help improve low osteoporosis screening rates.

Here, we describe the development of Rho, report on its
performance in three independent datasets, and describe
how use of this device can improve clinical care.
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Table 1. Test set characteristics

TNI

Characteristic Women Men
x-ray-DXA pairs, n 3,111 618
Age, y (mean [SD]) 66.8 (9.7) 72.5 (9.0)
% with low BMD 84.6 60.7
X-ray types
Chest PA 1,092 (35.1) 239 (38.7)
Hand AP 210 (6.8) 40 (6.5)
Knee AP 498 (16.0) 74 (12.0)
Lumbar AP 643 (20.7) 148 (23.9)
Pelvis AP 393 (12.6) 64 (10.4)
Thoracic AP 275 (8.8) 53 (8.6)

CaMos OAl
Women Men Women Men
1,258 522 293 298
70.1 (8.2) 68.3 (8.3) 65.9 (8.5) 64.8 (9.2)
75.4 40.4 50.5 28.2
N/A N/A N/A N/A
N/A N/A 78 (26.6) 72 (24.2)
N/A N/A 120 (41.0) 124 (41.6)
714 (56.8) 315 (60.3) N/A N/A
N/A N/A 95 (32.4) 102 (34.2)
544 (43.2) 207 (39.7) N/A N/A

Values are n (%), unless otherwise indicated. AP = anteroposterior; BMD = bone mineral density; CaMos = Canadian Multicentre Osteo-
porosis Study; DXA = dual energy x-ray absorptiometry; N/A = not available; OAl = Osteoarthritis Initiative; PA = posteroanterior; TNl =

True North Imaging.

METHODS
Datasets

True North Imaging (TNI) Community Imaging
Centre data. This retrospective study was performed using
de-identified digital radiographs and DXA-derived BMD
values of the lumbar vertebrae L1 to L4 (L1-4) and FN from
adult patients collected from 19 community imaging centers
in Ontario, Canada from January 1, 2010 to January 1,
2021. The study was approved by an independent review
board (Veritas, Montreal, Canada), with a waiver of
informed consent. An individual’s x-rays were paired to a
DXA report when the absolute value of At (time between x-
ray and DXA) was less than 1 year. We assumed that a At of
up to 1 year was acceptable, given the typically slow rate of
bone loss in most patients. The dataset was then split by
geographically separated imaging clinics into a training and
validation set (from 13 TNI centers, hereafter referred to as
TNI13, in Kitchener, Cambridge, and Waterloo) and a zest
set (from 6 TNI centers, hereafter referred to as TNIG, in
Toronto). Any x-ray—DXA pairs that were not exclusively
from TNIG6 or TNI13 were discarded.

TNI population for algorithm development. TNI13
data were used to develop the Rho algorithm, to estimate the
BMD of both L1-4 and FN from an x-ray of the lumbar
spine, thoracic spine, chest, pelvis, knee, or hand (ie, one of
six body parts), using DXA values as the reference standard
(n = 62,023 x-ray—DXA pairs; Table S1). TNI13 has a
higher prevalence of low BMD than the general
population (Table S2), as cases are derived from a

population of individuals who have had a DXA (and thus
already are suspected of being at risk of low BMD).
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TNI population for algorithm testing. The TNI6 x-
ray—DXA pairs were limited to those aged 50 years and older
(n = 8,715 x-ray—DXA pairs). When multiple pairs were
available from a single patient, we kept only one pair (see
Supplemental  Digital Content), to avoid bias in
performance of the algorithm due to pseudo-replication

(n = 3,729).

ROC curve
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o
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Fig. 1. Receiver operating characteristic (ROC) curves for
Rho score predicting low bone mineral density (T-score

< —1) in three independent datasets. Areas under the curve
(AUC) and 95% confidence intervals are presented for the
three datasets. True North Imaging (TNI; n = 3,729) AUC:
0.89 (0.87-0.90); Canadian Multicentre Osteoporosis Study
(CaMos; n = 1,780) AUC 0.87 (0.85-0.87); Osteoarthritis
Initiative (OAl; n = 591) AUC 0.82 (0.79-0.85).
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Table 2. AUC using Rho score or age as a predictor of low BMD in different races

Analysis Low BMD, AUC With Age as
Group n n Predictor

TNI6

Women 3,111 2633 0.62 (0.60-0.65)

Men 618 375 0.58 (0.54-0.62)
CaMos

Women 1,258 948 0.64 (0.61-0.67)

Men 522 211 0.52 (0.40-0.63)
OAI

Women 293 148 0.71 (0.66-0.76)

Men 298 84 0.68 (0.62-0.74)

*To minimize the absolute difference between sensitivity and specificity.

AUC With Rho Score as Optimal Rho Score

Predictor Cutpoint*
0.89 (0.88-0.91) 6 (6-6)
0.82 (0.79-0.85) 6 (6-6)
0.85 (0.84-0.87) 7 (7-7)
0.81 (0.72-0.88) 6 (6-6)
0.82 (0.78-0.85) 6 (6-6)
0.80 (0.75- 0.84) 5 (5-5)

Boldface indicates significance. AUC = area under the receiver operating characteristic curve; BMD = bone mineral density; CaMos = Ca-
nadian Multicentre Osteoporosis Study; OAIl = Osteoarthritis Initiative; Rho = machine learning-based software program (16 Bit, Toronto,
Canada); TNI6 = a test set from 6 True North Imaging centers in Toronto.

Canadian Multicentre Osteoporosis Study (CaMos)
population for algorithm testing. A subset of CaMos
[14] data with x-ray~DXA pairs were identified (see
Supplemental Digital Content). Informed consent was
obtained from each participant, and the study was
approved by the institutional review board of each
participating institution. The current study was approved
by an independent review board (Veritas, Montreal,
Canada). The subset included participants with digital x-
rays of lumbar or thoracic spine aged 50 years and older.
We kept only one x-ray—DXA pair per individual (n =
1,780).

Osteoarthritis Initiative (OAI) population for algo-
rithm testing. A subset of the OAI [15] data with x-ray—
DXA pairs were identified (see Supplemental Digital
Content). Informed consent was obtained from each
participant, and the study was approved by the institutional
review board of each participating institution. The subset
included participants aged 50 years or older with x-rays of
the pelvis, hand, or knee. All participants came from the
progression subcohort, meaning they had symptomatic
tibiofemoral knee OA data at baseline. BMD was measured
only at the FN; thus, in this dataset, reference-standard low
BMD was defined based on FN BMD T-score < —1. We
kept only one x-ray—DXA pair per individual (n = 591).

BMD Reference Standard

Patients were classified as having low BMD if either L1-4
or FN had a BMD T-score < -1, as measured by DXA.
BMD T-scores were derived using peak bone mass at L1-
4 or FN from National Health and Nutrition Examina-
tion Survey (NHANES) female reference values [16,17].
BMD values measured using GE densitometers (GE
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Healthcare, Madison, WI) were converted to a Hologic
base (Hologic Inc, Marlborough, MA) using clinically
accepted methods [18].

Machine-learning Algorithm

Rho (developed by 16 Bit [A.B., C.S., M.C.]) was trained
using a single machine-learning algorithm (see Supplemental
Digital Content) using data from all eligible body parts
(chest, thoracic, lumbar, hand, knee, pelvis) of the TNI13
dataset. A k-fold training approach was taken, with k = 4.
Validation splits were used to select model parameters that
minimized mean absolute error between the model-derived
BMD estimates and the DXA BMD measures at both L1-
4 and FN.

Algorithm Output
The algorithm outputs a Rho score, rather than a T-score, as
it is not intended to diagnose or rule out disease. The Rho

score ranges from 1 to 10 and correlates with a patient’s
likelihood of having low BMD (T-score < —1).

Statistical Analyses

Area under the receiver operating characteristic curve
(AUC). The AUC is an effective way to summarize the
overall diagnostic performance of a test and is the most
appropriate metric in assessing the test’s ability to correctly
rank order subjects within a population. The 95% confi-
dence intervals were verified with bootstrap resampling (n =
4,000) with replacement. The minimum number of boot-
strap samples [19] (10%*/alpha) for an alpha of 0.025 is
4,000. The R package cutpointr [20] was used to calculate
the 95% confidence intervals on the AUC using 4,000
bootstraps using in-bag values in the AUC_b column of
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Table 3. AUC using age or Rho score as a predictor of low
BMD in different races

AUC With Rho
Score as Predictor

White (n = 5423) 0.87 (0.86-0.88) 0.59 (0.58-0.61)
Asian (n = 163) 0.93 (0.89-0.96) 0.50 (0.38-0.61)
Other (n = 317) 0.85(0.81-0.89)  0.60 (0.53-0.67)
Black (n = 181) 0.85 (0.80-0.90)  0.69 (0.62-0.76)
Hispanic (n = 16)  0.96 (0.88-1.00)  0.46 (0.33-0.82)

AUC With Age

Race as Predictor

AUC = area under the receiver operating characteristic curve;
BMD = bone mineral density; Rho = machine learning-based
software program (16 Bit, Toronto, Canada).

the bootstrap results. The algorithm takes as input an x-ray
image, age, and sex. On average, BMD is lower in women
than in men, and it decreases with age. To confirm the value
of the x-ray image as input into the Rho score, we calculated
AUC by age in sex-specific groups to compare with the
AUC by Rho score in sex-specific groups.

Sample size and power. Based on the results of each of
the four folds during algorithm development, we expected
to achieve an AUC of 0.85. We proposed a null hy-
pothesis, or performance goal (PG) for the AUC to be >
0.75 (ie, the lower bound of the 95% confidence interval
must be > to the PG). For an AUC point estimate of
0.85 and a PG of 0.75, to achieve 80% power at a one-
sided alpha of 0.025, we require 98 negative cases and 98
positive cases (PASS 2021 Power Analysis and Sample
Size Software [2021], NCSS, Kaysville, UT). All three
datasets had at least 98 negative and 98 positive cases;
thus, we are adequately powered for this analysis. Analyses
were conducted in relevant subsets, including sex, age
decade, x-ray type, and race.

Statistical analyses were performed by C.S., in R, version
4.2.2.

RESULTS

In TNIG6, female patients were younger than male patients,
and in CaMos and OAI, male patients and female patients

were similar in age. In all datasets, as expected, female

Table 4. Confusion matrix for a Rho score of 6

True False False True
Dataset Positive Negative Positive Negative
TNI 2,541 467 168 553
CaMos 1,024 135 222 399
OAl 145 87 60 299

CaMos = Canadian Multicentre Osteoporosis Study; OAl = Oste-
oarthritis Initiative; Rho = machine learning-based software
program (16 Bit, Toronto, Canada); TNl = True North Imaging.
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patients versus male patients had lower BMD, and a higher
frequency of low BMD (Table 1). Additional characteristics
of body mass index, BMD, and race can be found in
Supplemental Digital Content (Tables S3-S5).

The Rho score achieved an AUC of 0.89 (0.87-0.90),
0.87 (0.85-0.87), and 0.82 (0.79-0.85) in the TNIG,
CaMos, and OAI datasets, respectively, at classifying low
BMD (Fig. 1). Subset analyses by sex, age decade, and x-ray
type in the three test sets showed that the AUCs for
identifying patients with low BMD were similar—~0.80
or higher (Tables S6-58; four subsets had 0.76 < AUC <
0.80; however, each of those four sets was not adequately
powered, as they did not have 98 negative cases and 98
positive cases). The Rho score achieved a higher AUC
than age, supporting the contribution of the image to the
risk score generated (Table 2). When these groups were
further divided by age decade, the AUCs for the Rho
score all remained similar for each decade (~0.8), whereas
those for age were lower (Table S9).

When the three independent datasets are pooled to increase
numbers of x-ray—~DXA pairs in racial subgroups, the Rho score
achieved an AUC ~ 0.8 for the races studied (Table 3).

Sensitivity and specificity of Rho will depend on the
Rho score threshold at which a site considers a patient to be
at high risk for low BMD. The Rho score in the TNI dataset
that minimized the absolute difference between sensitivity
and specificity was 6 (Table S6). Table 4 shows the numbers
of true and false negatives and positives in the three datasets
when this threshold was applied.

The Rho report that is sent to PACS for a radiologist’s
consideration displays the patient’s Rho score, as well as
the results from the TNI6 dataset: a graph of the frequency
of low BMD (defined by the reference standard, ie, DXA
T-score < —1) for the TNI6 patients within each Rho
score bin (Fig. S1). For example, 2 of 64 TNI6 patients
with a Rho score of 1 (3.1%) had low BMD by DXA,
whereas 518 of 613 TNI6 patients with a Rho score of 6
(85%) had low BMD by DXA.

DISCUSSION

Our study demonstrates that Rho can identify individuals
who are at risk of low BMD (defined as DXA BMD T-score
< =1 at FN or L1-4) from standard x-rays of various body
parts with high diagnostic performance. Results were similar
in x-rays of each studied body part (chest, lumbar spine,
thoracic spine, pelvis, hand, and knee), ie, even when the FN
and L1-4 are not included in the image. Rho’s performance in
three independent datasets, with different sexes, ages, and
races, supports the generalizability of the algorithm. AUC was
>0.80 in three independent datasets; TNI6 had a higher
prevalence than that in the general population, CaMos had a
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prevalence similar to that in the general population, and OAI
had a lower prevalence than that in the general population.
These results suggest that the algorithm will perform well
when implemented in various populations.

This study assessed the performance of an opportunistic
screening tool in men and women aged 50 years and older.
This age category was chosen partly by design of the preex-
isting datasets used (ie, CaMos), and due to the fact that most
women undergo menopause at this age. The AUC provides an
indication of overall diagnostic performance of a test and is the
most appropriate metric in assessing a test’s ability to correctly
rank order subjects within a population; however, sensitivity
and specificity of Rho will depend on the Rho score threshold
at which a site considers a patient to be at high risk for low
BMD. Given that the information provided would otherwise
not be obtained, no cost is associated with a true negative or
false negative. A true positive potentially saves costs associated
with a future osteoporotic fracture (to both the health care
system [treatment and rehabilitation] and the individual [po-
tential loss of income or quality of life]). The cost of a false
positive includes the time of a radiologist to report the finding,
and the time of the patient and physician for a clinical fracture
risk assessment. The latter, however, is recommended to be
conducted in this age group [21]: a finding of high fracture
risk by clinical assessment is an indication for DXA referral
in adults aged <65 years (for women in the United States
[6], and for both sexes in Canada [9]). Further research is
necessary to determine the optimal age for this kind of
which

jurisdiction based on a variety of health economic factors.

opportunistic ~ screening, is likely to vary by

Opportunistic screening of osteoporosis using CT scans,
eg, for colonography or lung cancer screening, has been FDA-
cleared and is reimbursed by Medicare in the United States
[22]. To the best of our knowledge, no such tool has been
cleared for opportunistic screening using standard x-ray.
Given the high frequency with which standard x-rays, and
in particular chest x-rays, are performed, such screening has
the potential for widespread integration into clinical practice.

To our knowledge, this is one of the first large studies to
use machine learning to predict L1-4 and FN BMD as a
means to identify patients at risk for having low BMD, from
a variety of standard x-rays, even when the FN and L1-4 are
not included in the image. Some studies have used pelvic
[10,11] or lumbar [11,13] x-rays, and have shown utility in
predicting BMD in those body parts. Other researchers have
had success predicting BMD from chest x-rays [12].
Strengths of Rho include its use of end-to-end machine
learning without any manual image preprocessing, land-
marking, or segmentation systems, and its achievement of a
high AUC despite the variety of x-ray inputs, many of which
do not include the anatomic sites traditionally used for
bone-density assessment (FN and L1-4).
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The current study has several limitations. First, DXA
BMD values have several sources of error, including vari-
ability among both manufacturers [23] and operators, and the
impact of degenerative change or aortic calcification;
nonetheless, this method is considered the gold standard for
BMD measurement. Second, in the OAI dataset, reference-
standard low BMD (T-score < —1) was based on the
BMD T-score at the FN only (rather than considering the
lowest of L1-4 or FN), as L1-4 BMD was not measured. We
do not expect that additionally considering L1-4 would
greatly affect the results, as a previous study in a US popu-
lation showed no significant difference in prevalence of low
BMD when defining low BMD using FN only versus the
lowest of FN and lumbar spine BMD [2]. Strengths of the
study include the use of three independent datasets, x-rays
of multdple body parts, and analyses to assess performance
in relevant subsets, including race. Although the study
included relatively small numbers of participants/patients
representing  traditionally underrepresented subgroups in
studies evaluating medical devices, the results suggest that
similar performance would be seen in race-based subsets.

TAKE-HOME POINTS

Incorporating use of a machine-learning algorithm
that can identify individuals at-risk of having low
BMD by analyzing standard x-rays of the lumbar
spine, thoracic spine, chest, pelvis, hand, or knee into
clinical practice could provide opportunistic screening
of low BMD in patients who undergo radiography for
a variety of clinical indications.

Inclusion of an at-risk finding in a radiologist’s report
could prompt a referring physician to conduct a
clinical assessment of fracture risk.

An opportunistic screening tool such as this opens a
window for early prevention and intervention strate-
gies to slow the rate of bone loss.

Ultimately, this approach can decrease the incidence
of fragility fractures leading to significant health care
cost savings and minimizing the morbidity and mor-
tality associated with these fractures.
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