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Recent studies have shown that obesity is associated with an increased risk of fracture in both adults and
children. It has been suggested that, despite greater bone size, obese individuals may have reduced true
volumetric density; however this is difficult to assess using two dimensional techniques such as DXA. We
evaluated the relationship between fat mass, and bone size and density, in a population cohort of children in
whom DXA and pQCT measurements had been acquired.
We recruited 530 children at 6 years old from the Southampton Women's Survey. The children underwent
measurement of bonemass at thewhole body, lumbar spine and hip, together with body composition, by DXA
(Hologic Discovery, Hologic Inc., Bedford, MA, USA). In addition 132 of these children underwent pQCT
measurements at the tibia (Stratec XCT2000, Stratec Biomedical Systems, Birkenfeld, Germany).
Significant positive associations were observed between total fat mass and both bone area (BA) and bone
mineral content (BMC) at the whole body minus head, lumbar spine and hip sites (all pb0.0001). When true
volumetric density was assessed using pQCT data from the tibia, fat mass (adjusted for lean mass) was
negatively associated with both trabecular and cortical density (β=−14.6 mg/mm3 per sd, p=0.003; β=
−7.7 mg/mm3 per sd, p=0.02 respectively).
These results suggest that fat mass is negatively associated with volumetric bone density at 6 years old,
independent of lean mass, despite positive associations with bone size.
This article is part of a Special Issue entitled “Bone and Fat”.
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Introduction

Weight and body composition are major determinants of bone size
and density throughout life, reflecting adaptation of skeletal model-
ling to loading and endocrine influences. This is reflected in positive
associations between fat mass and BMD in adults and the negative
correlation between risk of fracture and weight in the elderly [1].
Studies of children have yielded conflicting results with regard to
the relationships between fatmass, and bone size, density and fracture
risk. Thus some studies have shown positive relationships between
fat mass and bone size[2,3], with others additionally demonstrating
negative associations with bone mineral content [4–7], suggesting a
failure of the skeleton to achieve adequate adaptation to the excess
load resulting from obesity. Further studies have shown associations
which varied by the age and sex of the child and whether the rela-
tionshipswere assessed cross-sectionally or longitudinally [8,9]. Given
the increasing prevalence of obesity and the epidemiological data
suggesting a positive relationship between obesity and risk of fracture
in children [10], it is important to understand these relationships
more fully.

These data have been difficult to disentangle because of the im-
perfect correction for body size afforded by DXA, and the existence of
few data from the use of pQCT. In this study we therefore aimed to
evaluate the relationship between fat mass and bone size and vol-
umetric density among pre-pubertal children within a narrow age
range, recruited from a free-living population cohort, the Southampton
Women's Survey (SWS) and who had undergone assessmentwith DXA
and pQCT.
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Methods

Participants

The SouthamptonWomen's Survey is a prospective cohort study of
12,583 women aged 20–34 years recruited from the general popula-
tion [11]. At enrolment the participants were characterised in detail
in terms of diet, lifestyle, health, physical activity and anthropometric
measurements. 3159 of these women were followed through a sub-
sequent pregnancy and delivered a live born infant. The children are
being followed and characterised at regular intervals. Of the 1268
eligible families contacted during the study period for a 6 year follow
up 530 attended for DXA, forming the cohort presented in this paper.

6 year DXA assessment

The mother and child were invited to visit the Osteoporosis Centre
at Southampton General Hospital for assessment of bone mass and
body composition. At this visit written informed consent for the
DXA scan was obtained from the mother or father. The child's height
(using a Leicester height measurer, Seca Ltd, UK) and weight, using
calibrated digital scales (Seca Ltd, UK) were measured. Whole body
(including body composition) and lumbar spine scans were obtained,
using a Hologic Discovery instrument (Hologic Inc., Bedford, MA,
USA). To encourage compliance, a suitably bright sheet with ap-
propriate pictures was laid on the couch and to help reduce move-
ment artefact, the children were shown a suitable DVD. The total
radiation dose for the scans were as followed: whole body (paediatric
scan mode) 4.7 μSv, spine (L1–L4) 1.5 μSv and hip 7.3 μSv. The
manufacturer's coefficient of variation (CV) for the instrument was
0.75% for whole body bone mineral density, and the experimental CV
when a spine phantom was repeatedly scanned in the same position
16 times was 0.68%. All scans were checked for movement and
clothing artefact resulting in 499 suitable for analysis.

pQCT

A consecutive subgroup of 172 children was invited back to the
Osteoporosis Centre to have an additional assessment of bone mass
using a pQCT peripheral quantitative computed tomography scanner
(Stratec XCT 2000, Software version 6.00 B 00.61, threshold for
cortical bone 710 mg/cm3, Stratec Biomedical Systems, Birkenfeld,
Germany) following the DXA visit. After written informed consent
was obtained the child's lower leg length was measured from the
medial malleolus to the tibial tuberosity in order to demarcate the
correct scan position. The child was then asked to place their right
lower leg into the pQCT instrument; the laser guidance system on the
instrument was used to position the medial malleolus correctly. The
foot was secured into place in order to reduce movement artefact. A
suitable DVD was used in order to occupy the child and again reduce
movement artefact.

A scout view was obtained to find the distal end of the tibia. A
reference linewas then placed; the 4% sitewas used to assess trabecular
density and the 38% site for cortical density. The total radiation dose
for the scans was 1.5 μSv. All scans were checked for movement, and
excluded if the circumferencewas interrupted. 148 children underwent
pQCT assessment. Of these, 132 scans were suitable for trabecular bone
analysis (4% site); 125 were also suitable for analysis of cortical bone
indices (38% site).

Statistical analysis

Bone outcomes from DXA at 6 years included: bone area (BA),
bone mineral content (BMC), areal bone mineral density (aBMD) at
the whole body minus head and lumbar spine. Bone indices from
pQCT included total area, trabecular content and trabecular density at
Please cite this article as: Cole ZA, et al, Increased fat mass is associate
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4% site; at the 38% site total area, cortical area, content, thickness
and densitywere assessed, togetherwith stress–strain index. Children
were classified as either normal weight, overweight or obese using
themethod of Vidma et al. [12]. This classification incorporates height,
weight, age and gender based on records derived from the 1990
British Growth Reference and the 2000 US CDC Growth Reference
data, to give outcomes appropriate to growing children. All fat mass
variables were positively skewed, and so were log-transformed. For
ease of interpretation, and to allow comparison of relationships, these
values, and those for lean mass variables, were converted to within
group z-scores. T-test and Wilcoxon–Mann Whitney tests were used
to explore differences in anthropometric characteristics, pQCT and
DXA measurements between males and females. Linear regression
models were fitted to explore the relationships between body com-
position and bone indices. Both age at DXA/pQCT and gender of the
child were associated with bone indices, hence all bone indices were
adjusted for age at scan, and gender. All analyses were also conducted
unadjusted for gender, but incorporating a gender-predictor interac-
tion term to explore the role of the child's sex in potentially modifying
any relationships observed. Since more adipose children also tend
to have greater lean mass (more muscle is required to enable loco-
motion in a heavier individual), and lean mass may have a positive
effect on bone through loading, lean mass was considered to be a
potential mechanistic mediator in any relationship between fat and
bone. Analyses were therefore conducted unadjusted and adjusted
for lean mass. Statistical analyses were performed using Stata 11.0
(Statacorp, Texas, USA).

The Southampton Women's Survey was approved by the South-
ampton and SouthWest Hampshire Local Research Ethics Committee.
Written consent was obtained from parents/carers of all participants.

Results

Characteristics of the children

Analyses are based on 499 children with complete DXA data at
6 years. Table 1 summarises the characteristics of the children. De-
spite similar height and weight at age 6 years, there were differences
in bone indices by gender. Additionally, girls had a greater mean total
fat mass compared with the boys (pb0.0001). 395 children were of
normal weight (equivalent to adult BMIb25 kg/m2), 50 were over-
weight (equivalent to adult BMI between 25 and 30 kg/m2) and 17
were obese (equivalent to adult BMIN30 kg/m2). All, apart from 18
childrenwere of white Caucasian ethnicity. There was no difference in
the anthropometricmeasures at birth and at age 1 year between those
children who did or did not participate in this study; however study
participants' mothers tended to be of higher social class (p=0.004)
and were less likely to smoke (p=0.03). The subgroup of children
who underwent pQCT were slightly younger than the overall group
who underwent DXA (6.5 years versus 6.6 years in the overall DXA
group, pb0.01), but otherwise were broadly similar.

Relationships between body composition and bone mass

Table 2 summarises the relationships between body composition
and bone indices. Both total fat mass and total lean mass were
positively associatedwithwhole bodyminus head BA, BMC and aBMD.
When lean mass was included in regression models, these relation-
ships were somewhat attenuated, but remained statistically signifi-
cant; the associations between fatmass and bone indices at the lumbar
spine became non-significant after inclusion of lean mass. There was
evidence of gender differences in the relationships between lean
adjusted fatmass and the bone outcomes,whichwere stronger inmale
than female children (p value for the lean adjusted fat mass–gender
interaction terms with whole body BA, BMC, aBMD all b0.05). Similar
d with increased bone size but reduced volumetric density in pre
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Table 1
Childhood characteristics among the 253 boys and 246 girls at age 6 years.

Characteristic Boys (n=253) Girls (n=246) P difference

Gestational age, weeks (median, IQR) 40.0 (38.9–40.9) 40.1 (39.1–41) 0.1
Birthweight, g (mean, sd) 3483.9 (525.3) 3416.6 (524.6) 0.16
Age at pQCT, years (mean, sd) 6.8 (0.2) 6.7 (0.2) 0.19
Age at DXA, years (mean, sd) 6.6 (0.2) 6.6 (0.2) 0.7
Height, cm (mean, sd) 120.4 (4.6) 120 (5.5) 0.32
Weight, kg (median, IQR) 22.8 (21.2–24.9) 23.2 (21.2–25.8) 0.23
BMI category
Normal [n (%)] 215 (90.34) 180 (80.36)
Overweight [n (%)] 18 (7.56) 32 (14.29)
Obese [n (%)] 5 (2.10) 12 (5.36) 0.009
WB BMC, g (mean, sd) 531.7 (71.1) 532.3 (72.8) 0.92
WB bone area, cm2 (mean, sd) 893.8 (62.3) 901.5 (67.0) 0.18
WB aBMD, g/cm2 (mean, sd) 0.6 (0.05) 0.6 (0.05) 0.28
Total fat mass, g (median, IQR) 4605.1 (3795.2–5524.1) 5937.3 (4856.8–7518.2) b0.0001
Total lean mass, g (median, IQR) 17604.7 (16270.6–18940.3) 16659.7 (15105.8–18055.1) 0.0001
LS BMC, g (mean, sd) 18.1 (2.8) 17.7 (2.7) 0.07
LS bone area, cm2 (mean, sd) 34.0(3.1) 32.3 (3.2) b0.0001
LS aBMD, g/cm2 (mean, sd) 0.53 (0.06) 0.55 (0.06) 0.01
4% total area mm2 (mean, sd) 682.1 (101) 675 (93.2) 0.67
4% trabecular content mg/mm slice (mean, sd) 100.1 (27.2) 103.2 (22.5) 0.48
4% trabecular density mg/mm3 (mean, sd) 321.1 (58.4) 337.8 (51.2) 0.08
38% area mm2 (mean, sd) 213.2 (31.8) 217.8 (31) 0.42
38% cortical content mg/mm slice (mean, sd) 123 (17.7) 121 (17.2) 0.51
38% cortical density mg/mm3 (mean, sd) 1036.4 (35.6) 1038.2 (33.7) 0.77

WB = whole body minus head; LS = lumbar spine; BA = bone area; BMC = bone mineral content; aBMD = areal bone mineral density; 4% and 38% tibial sites from pQCT.
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gender differences were observed in the associations between lean-
adjusted fat mass and bone indices at the lumbar spine.
Relationships between body composition and pQCT derived volumetric
bone indices

The results from the subgroup of 132 children who had pQCT
data available for the tibia are shown in Table 3. There was a nega-
tive relationship between total fat mass and cortical density and a
suggestion of a negative association with trabecular density. After
adjustment for lean mass, total fat was negatively associated with
both trabecular and cortical density. Fat mass adjusted for lean mass
was associated positively with total and cortical area but not cortical
thickness or stress–strain index at the 38% site. When the pQCT
outcomes were adjusted for the height of the child at six years, the
relationships were broadly similar, but the association between total
fat and total area at the 4% site became attenuated (unadjusted
β=26 mm2/sd vs adjusted β=7 mm2/sd) and statistically non-
significant (p=0.3). The smaller number of children with pQCT than
DXA assessments offered reduced power to explore interactions with
the sex of the child but there was evidence of an interaction between
lean adjusted fat and gender with trabecular density (p value for lean
Table 2
The relationships between body composition at age 6 years and whole body and lumbar sp

Whole body

BA, cm2 BMC, g aBMD, g/c

β (CI) β (CI) β (CI)

Total fat (sd) 18.5 (13.2,23.8)⁎⁎⁎ 27.5 (21.9,33.2)⁎⁎⁎ 0.02 (0.0
Total lean-adjusted fat (sd) 6.9 (2.4,11.4)⁎⁎ 11.4 (7.6,15.3)⁎⁎⁎ 0.008 (0.0
Total lean (sd) 39.2 (34.1,42.9)⁎⁎⁎ 55.1 (50.7,58.4)⁎⁎⁎ 0.04 (0.0

Tables show regression coefficient and 95% CI.
BA = bone area; BMC = bone mineral content; aBMD = areal bone mineral density.

⁎⁎⁎ pb0.001.
⁎⁎ pb0.01.
⁎ pb0.05.

Please cite this article as: Cole ZA, et al, Increased fat mass is associate
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adjusted fat–gender interaction term=0.006). This suggested stron-
ger associations between lean adjusted total fat mass and trabecular
density in the male than female children.
Discussion

In this pre-pubertal, free-living population, fat mass, adjusted for
lean mass, was associated positively with bone size but negatively
with true volumetric density assessed by pQCT, across the whole fat
mass distribution.

We recruited children from a free-living population cohort and
used objective measures of body composition and bone size and
density. However, there are several limitations to our study. We were
only able to study a proportion of the original cohort. However
the children who underwent the 6 year assessment did not differ at
birth or 1 year old from those who did not. Mothers of children who
underwent 6 year assessment were broadly similar to mothers of
those children who did not, but were more likely to be of higher social
class and less likely to smoke. However, as the analysis is based on
internal comparisons it is difficult to envisage how this would have
spuriously shown an association between fat mass and bone size and
density. The study population included a very small number of non-
ine bone mass.

Spine

m2 BA, cm2 BMC, g aBMD, g/cm2

β (CI) β (CI) β (CI)

1,0.02)⁎⁎ 0.5 (0.2,0.7)⁎⁎⁎ 0.5 (0.2,0.7)⁎⁎⁎ 0.007 (0.002,0.01)⁎⁎

06,0.01)⁎⁎⁎ −0.1 (−0.4,0.1)⁎ −0.1 (−0.3,0.03) −0.002 (−0.007,0.002)
3,0.04)⁎⁎⁎ 1.9 (1.6,2.1)⁎⁎⁎ 2.0 (1.8,2.1)⁎⁎⁎ 0.03 (0.02,0.03)⁎⁎⁎

d with increased bone size but reduced volumetric density in pre
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white Caucasian children and therefore it is uncertain whether our
findings may be generalisable across these other ethnic groups.
Secondly we used DXA to measure bone mass. This technique is
associated with technical limitations in children. Measurement of
bone mineral in young children is hampered by their tendency to
move and also by their low absolute BMC. However, we used specific
paediatric software, and movement artefact was modest and uniform
across the cohort; those few children with excessive movement were
excluded from the analysis. DXA measures of bone mass have been
shown to correlate well with whole body calcium content in ashing
studies of piglets [13,14]. Finally, we used a number of adjustments in
the analyses, for example adjusting fat mass for lean mass. There is a
biological rationale for this approach, as described in themethods, but
as a result of co-linearity between measurements, it is possible that
some analyses were over-adjusted; our conclusions are supported,
however, by the results from the unadjusted analyses.

Children who are overweight have approximately a twofold
increased risk of forearm fractures compared with controls [15]. A
recent study has shown that among obese children with a history of
fracture, lumbar spine bone mineral apparent density was reduced by
2–3 sd compared with non-obese children with a history of fracture
[16]. Thus at least part of the increased risk of fracture in obese
children may be mediated via reduced bone density rather than other
factors such as increased risk of falling. Our findings are in accord with
some, but not all, studies of pre-pubertal children using DXA and
pQCT. Thus fat mass adjusted for lean mass was positively associated
with whole body bone area and bonemineral content in a large cohort
in the South of England [2,3]. Volumetric density was not reported in
this study however. Other studies with DXA have shown children
with higher fat mass to have reduced BMC [4–6] for their body size.
In a cohort of 239 children, aged 3 to 5 years old, percentage fat
mass was positively associated with bone size but negatively with
volumetric density measured by pQCT at the tibia [8]. A more recent
study from the same group examined cross-sectional and then longi-
tudinal relationships between body composition and pQCT measured
bone indices. In this cohort of 370 children, aged 8 to 18 years, body
composition was assessed by DXA at baseline and children were
followed up with pQCT up to 90 months later [9]. In contrast to our
study, pQCT measurements were obtained at the radius, a non-
weight-bearing site, but longitudinally at the 4% site there were
negative relationships between percentage fat mass and volumetric
density. Interestingly in this study cross-sectional and some longitu-
dinal relationships between fatmass and bone sizewere also negative,
suggesting possible discordant effects of fat mass on upper and lower
limbs (perhaps indicating differential importance of endocrine vs.
mechanical mechanisms on non weight bearing and weight bearing
limbs). This study also raises the possibility of differential influences
of fat over time on childhood growth.

We observed that the relationships between lean adjusted total
fat mass and the DXA indices and trabecular density measured by
pQCT appeared stronger in the boys than in the girls. There are very
few data in the literature pertaining to gender differences in the
relationships between body composition and bone measures, partic-
ularly in young children. Associations between total fat mass and BMC
measured at the lumbar spine, hip and radius appeared stronger in
boys than girls in one population based study in children aged 10 to
17 years [17]. A larger study of 926 children aged 6 to 18 years, found
similar relationships between total fat mass and bonemineral content
in boys and girls before puberty but only in girls after puberty [18]. A
further study observed opposing influences of age and menache on
the fat-bone relationship in female children [9], supporting the notion
that hormonal factors such as oestrogen might be important here,
but clearly further work will be needed to elucidate any potential
mechanisms that might underlie these observations.

There are several mechanisms whereby obesity might influence
bone size and density: firstly by directly applying a greater load to the
d with increased bone size but reduced volumetric density in pre
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skeleton; secondly via an increase in compensatory muscle mass and
thirdly via modulation of physiological and biochemical parameters.
The first two of these mechanisms would suggest a positive rela-
tionship between fat mass and bone and perhaps could explain the
positive relationships with bone size, but not the negative associa-
tions with volumetric density. Additionally we found that the positive
associations between fat mass and bone size and the negative asso-
ciations between fat mass and volumetric density persisted after
adjustment for lean mass, suggesting that the relationships were not
mediated by muscle mass.

The emerging evidence that fat is not an inert tissue, but a highly
active endocrine organ, yields some additional possible explanations.
Adipocytes produce leptin, a peptide hormone involved in the regu-
lation of fat metabolism and appetite through hypothalamic mech-
anisms [19]. Recent work in animals has suggested that the primary
effect of leptin on bone formation is negative via hypothalamic
action on the sympathetic nervous system [20]. How this relates to
mechanisms in humans is as yet unclear. Conversely leptin may push
mesenchymal stem cells towards differentiation to osteoblasts rather
than adipocytes [21,22] and leptin receptors have been found on
osteoblasts, chondrocytes and bone marrow stromal cells [23]. Thus it
is possible that leptin may explain some of the relationship between
fat mass and bone, both positive and negative. Adiponectin is another
hormone released by adipocytes; in contrast to leptin it is negatively
related to overall fat mass. Adiponectin is associated with increased
insulin sensitivity and improved glucose tolerance. A recent study
from a large UK cohort related adiponectin, measured at 9.9 years,
cross-sectionally to bone indicesmeasured by DXA, and longitudinally
to those measured by pQCT at 15.5 years [24]. The direct relationships
between fat mass and volumetric density were not reported but total
fat mass was negatively related to adiponectin concentration, which
in turn negatively predicted volumetric density at 15.5 years. It seems
unlikely, therefore, that adiponectin could explain negative relation-
ships between fat mass and volumetric bone density. Insulin has been
shown to have positive effects on bone in animal studies [25], with
insulin resistance (and higher levels of insulin, as might be found in
obesity) associated with increased BMD [26–28] and reduced fracture
risk in humans [29]. Finally, recent work has suggested a role for
peroxisome proliferator-activated receptors (PPARs) in the regulation
of bone mass; reduced osteoblast function [30,31], increased
osteoclastogenesis [32] and altered adipocyte/osteoblast differentia-
tion [33] have been demonstrated in animal studies; thiazolidine-
dione drugs, which activate PPAR-gamma, have been shown to
increase fracture risk [34]. Subtypes of these nuclear receptors also
have a role in regulating insulin sensitivity and lipid metabolism [35],
and thus are likely to relate to obesity, but there are currently insuf-
ficient data to allow detailed conclusions regarding any bone-related
role in humans to be made.

In summary we have demonstrated that increased lean-adjusted
fat mass is related to increased bone size but decreased volumetric
bone density at the tibia. These results suggest that there is a negative
relationship between total fat mass and volumetric density of the tibia
across the distribution of fat mass, independent of lean mass. Given
the importance of peak bone mass for future fracture risk, obesity in
childhood could be a major target for public health interventions
aimed at optimising bone health.
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