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Objective: This study evaluated the performance of a deep learning-
based vertebral compression fracture (VCF) detection tool in
patients with incidental VCF. The purpose of this study was to
validate this tool across multiple sites and multiple vendors.

Methods: This was a retrospective, multicenter, multinational
blinded study using anonymized chest and abdominal CT scans
performed for indications other than VCF in patients ≥ 50 years
old. Images were obtained from 2 teleradiology companies in
France and United States and were processed by CINA-VCF v1.0,
a deep learning algorithm designed for VCF detection. Ground
truth was established by majority consensus across 3 board-certified
radiologists. Overall performance of CINA-VCF was evaluated, as
well as subset analyses based on imaging acquisition parameters,
baseline patient characteristics, and VCF severity. A subgroup was
also analyzed and compared with available clinical radiology
reports.

Results: Four hundred seventy-four CT scans were included in this
study, comprising 166 (35.0%) positive and 308 (65.0%) negative
VCF cases. CINA-VCF demonstrated an area under the curve
(AUC) of 0.97 (95% CI: 0.96-0.99), accuracy of 93.7% (95% CI:
91.1%-95.7%), sensitivity of 95.2% (95% CI: 90.7%-97.9%), and
specificity of 92.9% (95% CI: 89.4%-96.5%). Subset analysis based
on VCF severity resulted in a specificity of 94.2% (95% CI: 90.9%-
96.6%) for grade 0 negative cases and a specificity of 64.3% (95%
CI: 35.1%-87.2%) for grade 1 negative cases. For grades 2 and 3
positive cases, sensitivity was 89.7% (95% CI: 79.9%-95.8%) and
99.0% (95% CI: 94.4%-100.0%), respectively.

Conclusions: CINA-VCF successfully detected incidental VCF and
even outperformed clinical reports. The performance was consistent

among all subgroups analyzed. Limitations of the tool included
various confounding pathologies such as Schmorl’s nodes and
borderline cases. Despite these limitations, this study validates the
applicability and generalizability of the tool in the clinical setting.
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V ertebral compression fractures (VCFs) are the most
common osteoporotic fractures, with an estimated

prevalence of 5.3 million cases worldwide.1 VCFs are
associated with increased morbidity, leading to chronic back
pain, progressive kyphosis, and impaired pulmonary
function.2 Thus, prompt diagnosis of VCFs is critical to
guide appropriate management, prevent disability, and
decrease future fracture risk, particularly in the elderly
population.

Many VCFs are discovered incidentally on CT of the
chest, abdomen, or pelvis obtained for indications unrelated
to the VCF. However, VCFs are often underreported by
radiologists.3–7 False negative rates have been reported as
high as 46.5% in one multicenter, multinational study.8

To help mitigate this issue, deep learning tools have
been developed for VCF detection.9–11 These tools provide
automatic results, potentially reducing the workload and
improving the accuracy of radiologists screening for
incidental findings on a busy worklist. However, the utility
of these tools may be limited in real-world clinical settings.12
Given the paucity of data on the generalizability of
automated VCF detection, this study aims to evaluate the
performance of a deep learning-based FDA-cleared VCF
detection tool, CINA-VCF v1.0 (Avicenna.AI, La Ciotat,
France), in clinical settings across multiple sites and multiple
vendors in the United States and France.

MATERIALS AND METHODS
This was a retrospective study validating CINA-VCF

for VCF detection. Author J.E.S. controlled the data for the
study and has no commercial or financial relationships that
could be construed as a potential conflict of interest. The
data set was sourced from 2 teleradiology networks: vRAD
(Minneapolis, MN) and TeleDiag (Lyon, France). A waiver
of consent was obtained from the Western IRB and
TeleDiag for vRAD and TeleDiag cases, respectively.
Informed consent for participation was not required for
this study in accordance with the national legislation andDOI: 10.1097/RCT.0000000000001726
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institutional requirements. The data were anonymized
except for study date, allowing for partition into non-
overlapping training and validation data sets.

Patient Selection
Inclusion in this study required cases to be performed

on adults 50 years of age or older and for nonenhanced or
contrast-enhanced CT scans to meet the following criteria:
field of view includes the chest and/or abdomen, axial or
sagittal acquisition with a homogeneous slice interval
without a gap between successive slices, slice thickness
≤ 3 mm and soft and standard tissue reconstruction kernel.

Exclusion criteria were CT scans performed on patients
under 50 years of age or scans not following the mandatory
acquisition parameters listed above, as well as scans with the
following parameters: only the cervical spine was visible, at
least 3 consecutive vertebrae in the T1-L5 portion of the
spine were not present and not completely visible, unin-
terpretable poor-quality images (ie, significant motion,
streak, or other artifacts impeding CT interpretation), and
redundant cases.

Deep Learning Algorithm
CINA-VCF is a deep learning algorithm that employs

a cascade of task-focused networks based on 2D and 3D
U-Nets derived from convolutional neural networks
(CNNs).13 First, the algorithm locates the spine to reduce
data size and standardize the field of view. Subsequently, it
identifies the center of each lumbar and thoracic vertebral
body. A postprocessing step filters out artifacts such as
cement or other materials. The algorithm then identifies 6
measurement landmarks per vertebra to calculate vertebral
height loss (VHL). These values are then used to passively
flag a case as positive or negative for VCF.

The algorithm was trained and tested on a data set
representing 12,402 vertebrae acquired between January and
March 2021 for vRAD and March 2022 for TeleDiag using
a 5-fold approach (80% training and 20% testing) to
mitigate training bias. During the training phase, data
augmentation was used to enhance the data sets and to
improve model optimization and generalizability.

Subsequently, a sensitivity analysis was performed on a
separate data set of 1994 vertebrae from 152 cases to set the
internal thresholds and achieve a statistical power of 80% at
the 5% risk level for the triage metrics 95% CI lower bound.
The cases were acquired by vRAD during March 2021 and
by TeleDiag during June 2022. The resulting performance,
yielding a sensitivity of 92% (95% CI: 82%-97%), specificity
of 99% (95% CI: 93%-100%), and accuracy of 96% (95% CI:
92%-99%), demonstrated sufficient robustness of the mod-
els, allowing for final clinical validation to proceed.

The validation data set was consecutively acquired
between April and November 2021 for vRAD and between
November 2022 and January 2023 for TeleDiag. All data
sets were adequately distributed across different vendors,
patient demographics (age and gender), presence of
contrast, fields of view, and slice thicknesses. Both thoracic
and lumbar vertebrae were uniformly represented, and there
was substantial variation in VHL.

VCF Assessment
Ground truth was established by 2 board-certified

neuroradiologists (J.E.S. and D.C.), with consensus for
discordant cases determined by a third board-certified
neuroradiologist (P.C.). The neuroradiologists were allowed

to use measurement tools to proceed with the VHL
measurement in indeterminate cases and report any
confounding conditions (ie, artifact, presence of bone lesion,
and Schmorl’s nodes).

VCFs were graded by the Genant method, which
assigns to each vertebra a specific grade (normal, mild,
moderate, and severe) based on the degree of VHL.14 VHL
of < 20% reduction was graded as normal (grade 0), 20% to
25% reduction with mild but “definite” fracture as mild
(grade 1), 25% to 40% reduction as moderate (grade 2), and
40% or greater reduction as severe (grade 3). Normal and
mild fracture grades were grouped together and defined as
negative, similar to previous studies and in accordance with
FDA clearance.15,16

Statistical Analysis
Interrater reliability of ground truth assessment was

evaluated by Cohen kappa coefficient. Predictions from the
CINA-VCF device were compared with ground truth
through a confusion matrix to obtain sensitivity, specificity,
and accuracy. Positive predictive values (PPV) and negative
predictive values (NPV) were computed with varying
prevalence values (from 5% to 50%, in increments of 5%).
Stratified analyses were also performed on scanning
parameters, patient baseline characteristics (geographical
distribution of scans, age, sex, and ethnicity), and Genant
severity grading. A subgroup was also compared with
clinical radiology reports. The minimum number of cases
needed to achieve an expected area under the receiver
operating characteristic curve (ROC-AUC) at 95%, with a
significance of 5% and a power of 80% (β= 0.2), were 133
positive and 133 negative cases. MedCalc Statistical
Software (v20.015; MedCalc Software Ltd, Ostend, Bel-
gium) was used for analyses.

RESULTS
In total, 491 CT exams (331 vRAD and 160 TeleDiag)

met inclusion criteria. Seventeen (3.5%) cases were excluded
due to discordance among the 3 ground truth experts or
indeterminate diagnosis. A total of 474 anonymized CT
cases (259 with contrast and 215 without contrast),
including 317 US vRAD cases and 157 TeleDiag cases,
were included at this stage for CINA-VCF standalone
performance validation. Confounding conditions, including
artifact (motion, streak, or noise), was present in 9 positive
and 16 negative cases; bone lesions (sclerotic or lytic foci,
hemangioma, or metastasis) in 13 positive cases and 19
negative cases; and Schmorl’s nodes in 63 positive cases and
102 negative cases. Some cases had more than one
confounding condition. The mean±SD age of patients
included in the study was 72.1± 10.1 years old. Patient sex
distribution was 50.8% female, 47.7% male, and 1.5% where
the information was not available. Thirty-eight different
scanner models were utilized: 13, 8, 12, and 5 different
models for GE (Chicago, IL), Philips (Amsterdam, Nether-
lands), Siemens (Munich, Germany), and Canon (Toshiba;
Otawara, Tochigi, Japan), respectively. There were 294
(62.0%) grade 0 cases, 14 (3.0%) grade 1 cases, 68 (14.3%)
grade 2 cases, and 98 (20.7%) grade 3 cases. Patient
characteristics and CT scan parameters are presented in
Supplementary Table 1, Supplemental Digital Content 1,
http://links.lww.com/RCT/A352.

Among the 474 cases, 1 US board-certified radiologist
(J.S.), assessed 155 cases as positive (ie, at least 1 vertebra
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presented a VCF of grade 2 or more) and 312 as negative.
The second US board-certified radiologist (D.C.) annotated
154 cases as positive and 314 as negative. Disagreements
were observed for 51 (10.8%) cases (Cohen Kappa= 0.75,
95% CI: 0.69-0.81). The third US board-certified radiologist
(P.C.) reviewed the discordant cases, and ground truth was
established by majority consensus. The final VCF validation
data set included 166 (35.0%) positive and 308 (65.0%)
negative cases. Figure 1 shows examples of true positive
(TP), false negative (FN), and false positive (FP) cases.

The ROC-AUC was 0.974 (95% CI: 0.962-0.986)
(Fig. 2). The algorithm demonstrated sensitivity of 95.2%
(90.7%-97.9%), specificity of 92.9% (89.4%-96.5%), and
accuracy of 93.7% (95% CI: 91.1%-95.7%) (Fig. 3). There
were 8 FN with a miss rate of VCF of 4.8% (8/166 positive
cases). Most of the FN cases (5/8) were mild or borderline
VCFs with VHL around 25% (Fig. 1B). Other FNs were
caused by the concomitance of VCF with other pathologies
or anatomic distortions such as Schmorl’s nodes (5/8),
scoliosis (2/8), or artifact (2/8). A total of 22/308 (7.1%)
cases were FP. This was caused by Schmorl’s nodes
(Fig. 1C) and other mimics of VCF.

Subset performance analysis was performed on a per-
case basis according to Genant grade (Figs. 4, 5). Please
note that the per-case VCF grade was defined according to
the vertebra with the highest VHL grading. For example,
grade 3 VCF cases may have also included vertebrae with
grade 2 and/or grade 1 VCF. For grade 0 negative cases,
specificity was 94.2% (95% CI: 90.9%-96.6%), and for grade
1 negative cases, specificity was 64.3% (95% CI: 35.1%-
87.2%). For grades 2 and 3 positive cases, sensitivity was
89.7% (95% CI: 79.9%-95.8%) and 99.0% (95% CI: 94.4%-
100.0%), respectively. Subset performance analyses for
imaging parameters (scanner manufacturers, slice thickness,
contrast presence, and reconstruction kernel) and patient
baseline characteristics (age and sex) ranged from 91.6% to
100%, and specificities from 97.3% to 100%.

The clinical radiology report was available for 317
cases from the total cohort of 474 cases. Among these 317
cases, there were 120 positive cases according to the ground
truth. Only 44 of these cases were mentioned as positive in
the clinical radiology report; for the remaining 76 cases,
there was no mention of VCF in the report, leading to a

missed rate of 63.3% (76/120). CINA-VCF was capable of
correctly detecting 111 of the 120 positive cases, yielding a
missed rate of 7.5% (9/120). Therefore, the algorithm was
capable of detecting 88.2% (67/76) of cases that were
initially missed or not mentioned by the clinical report.

DISCUSSION
This is the first study to validate the performance of

CINA-VCF in detecting incidental VCFs in the clinical
setting. CINA-VCF demonstrated an area under the curve
(AUC) of 0.97, accuracy of 93.7%, sensitivity of 95.2%, and
specificity of 92.9%. When accounting for VCF severity,
CINA-VCF had a specificity of 94.2% for grade 0 negative
cases and 64.3% for grade 1 negative cases. For grades 2 and
3 positive cases, sensitivity was 89.7% and 99.0%, respec-
tively. Performance remained consistent across imaging

FIGURE 1. Example of a (A) true positive VCF, (B) false negative from mild deformation, and (C) false positive from a Schmorl’s node. VCF
indicates vertebral compression fracture.

FIGURE 2. Area under the receiver operating characteristic curve
(ROC-AUC) for CINA-VCF.
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parameters and patient demographics. Furthermore, CINA-
VCF outperformed VCF detection based on clinical reports.

In recent years, AI tools have been applied in
evaluating various aspects of VCFs. Prior studies have
investigated the use of a machine learning-based VCF
algorithm to diagnose moderate to severe grade VCFs on
CT, demonstrating sensitivity and specificity of 78% and
87%, respectively, in one study and 73.8% and 92.7% in
another study.17,18 Deep learning algorithms have been
shown to be comparable to radiologists in evaluating
VCFs.10 One study utilized a weakly supervised deep
learning approach to evaluate multiple VCFs in the lumbar
spine on CT, demonstrating equivalent or better perform-
ance to a supervised approach.19 Traditional machine
learning techniques combined with bone densitometry have
shown high sensitivity in detecting VCFs on CT.20
Distinguishing acute versus chronic VCF on CT has also
been done using a combined machine learning and radio-
mics approach.21 Others have used deep learning techniques
to detect VCF on radiographs, which are more widely
available and lower cost compared with CT or MRI.22,23

Strengths of this study include the robust performance
metrics, outperforming prior commercially available AI-
based VCF detection tools for CT in overall sensitivity and
specificity.17,18 Ground truth was established by neuro-
radiologists blinded to each other, and CINA-VCF was also
blinded to the radiologist’s classifications during training
and testing. Studies were obtained from multiple scanners
and sites, demonstrating the generalizability of the tool in a
variety of settings. In addition, CINA-VCF had better
performance in detecting VCFs compared with radiologist
reports, detecting 88.2% of cases that were initially missed
or not reported by the clinical report. This corroborates the
increased detection rate from other AI algorithms compared
with the radiologist report and shows a potential role for AI
in the clinical workspace for aiding the radiologist in
incidental VCF detection, which could allow for appropriate
follow-up and interventions.18

Limitations of the study included the retrospective
analysis. VCF mimics and other deformities, such as
Schmorl’s nodes, intervertebral disc vacuum phenomenon,
osteopenia, osteophytes, disc calcifications, ankylosing

FIGURE 3. Confusion matrix for overall VCF performance. FN indicates false negative; FP, false positive; NPV, negative predictive value;
PPV, positive predictive value; Sens, sensitivity; Spec, specificity; TN, true negative; TP, true positive; VCF, vertebral compression fracture.

FIGURE 4. Confusion matrices for Genant grade 0 and 1 negative cases.
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spondylosis, hemangiomas, and severe scoliosis generated
false positives, similar to prior studies.17 Borderline cases
where height loss was near the threshold for positivity was
also a limitation. Mild compression deformities were
considered negative in this study, even though they are
technicality VCFs. The decision to consider Genant grade 1
VCFs as negative cases was made in light of uncertainty
concerning misinterpretation of normal variations as
vertebral height loss, and the ambiguity of borderline VCF
cases likely contributed to the lower specificity of this group.
Clinically, management of grades 2 and 3 VCFs is more
urgent than grade 1 VCFs, and similar dedicated analyses of
moderate to severe VCFs have been performed in prior
studies.16–18 The performance of our method might have
been affected by the unequal distribution of our validation
data, particularly with respect to VCF grades; however, our
goal was to have an unbalanced validation data set, as we
aimed to represent the real-world prevalence of VCFs.

Future directions could incorporate other parameters
of VCFs to provide a more comprehensive risk profile for
current and future osteoporotic fractures. Markers of bone
marrow density on CT, including L1 trabecular attenuation
values, have been shown to be significantly lower in patients
with moderate or severe VCFs and could be added into the
algorithm to improve accuracy.24 Our algorithm graded
only the most severe VHL for cases that potentially had
multiple VCFs, and future algorithms identifying all VCFs
in a single case could be beneficial for counseling patients on
future VCF risk and for optimizing therapies. Additional
studies should be conducted to evaluate the clinical impact
and cost-effectiveness of a VCF tool.

This study validates the applicability and general-
izability of an AI-based VCF tool in the clinical setting.
CINA-VCF was able to detect VCF with high overall
accuracy, even outperforming radiology clinical reports.
Implementation of CINA-VCF may help with the identi-
fication of patients with osteoporosis and increased fracture
risk in patients with moderate to severe VCFs.
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