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Abstract This study aimed at developing a fully auto-

mated bone segmentation method for the human knee

(femur and tibia) from magnetic resonance (MR) images.

MR imaging was acquired on a whole body 1.5T scanner

with a gradient echo fat suppressed sequence using an

extremity coil. The method was based on the Ray Casting

technique which relies on the decomposition of the MR

images into multiple surface layers to localize the bound-

aries of the bones and several partial segmentation objects

being automatically merged to obtain the final complete

segmentation of the bones. Validation analyses were per-

formed on 161 MR images from knee osteoarthritis

patients, comparing the developed fully automated to a

validated semi-automated segmentation method, using the

average surface distance (ASD), volume correlation coef-

ficient, and Dice similarity coefficient (DSC). For both

femur and tibia, respectively, data showed excellent bone

surface ASD (0.50 ± 0.12 mm; 0.37 ± 0.09 mm), average

oriented distance between bone surfaces within the carti-

lage domain (0.02 ± 0.07 mm; -0.05 ± 0.10 mm), and

bone volume DSC (0.94 ± 0.05; 0.92 ± 0.07). This newly

developed fully automated bone segmentation method will

enable large scale studies to be conducted within shorter

time durations, as well as increase stability in the reading

of pathological bone.

Keywords Ray casting � MRI � 3D knee segmentation

1 Introduction

Magnetic resonance imaging (MRI)-based semi-quantita-

tive and quantitative assessments are increasingly used for

evaluation of the efficacy of disease modifying osteoar-

thritis drugs on knee osteoarthritis patients. As of now,

several MRI markers demonstrate strong associations to

osteoarthritis, either as predictive markers or markers of

disease severity; these include cartilage volume, osteo-

phytes, bone remodelling, bone marrow lesions, meniscal

lesions, and synovitis [1, 3, 5, 21, 26, 28]. The majority of

these rely on the precise localization of the bone surfaces.

Thus, a fully automated precise segmentation of knee

bones in MR images is an important step for the automatic

evaluation of knee structural changes over time as well as

of a drug’s effect on the joint.

Particular characteristics of MR images of the joint,

including image texture, pigmentation of tissues, contrast

between the same tissue from one patient to another,

contrast between the slices and within the same image,

artifacts, sharpness of contour profile, and position and

orientation of the imaged joint, have led to different types

of solutions. With regard to the segmentation of knee

bones, three types of solutions have been introduced in an

attempt to address the abovementioned difficulties. Authors

first reported techniques using basic signal analysis, e.g.,

directional edge filters [31], mathematical morphology [4],

gray-level classification [6], histogram analysis [19], and

watershed with markers [14], or other techniques including

the hybrid signal and model, e.g., texture level-set [23] and

model fitting [7, 10, 16, 17]. However, all of these solutions

require specific tuning depending on the variable image
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quality or the signal deterioration due to disease. This

tuning relies on initial manual intervention, additional

signal information, or interactive tuning, which makes the

autonomous use of these methods difficult in the context of

a large scale process in addition to significantly decreasing

the stability of bone segmentation, thus the success rate.

For example, the basic signal analysis using directional

edge filters to detect the femur contours, as well as other

segmentation initialization techniques [4, 6, 19, 31], needs

refinement to meet the required precision level. The

watershed with markers [14] does not allow easy control of

segmentation leakage or object tessellation. Both result in a

lack of stability and excessive sensitivity to noise as

reported by Hamarneh et al. [15]. For their part, techniques

using hybrid signals and models [23] implicate difficulties

in controlling the impact of parameters on the outcome; too

much weight is placed on the model to prevent segmen-

tation drift at the expense of the signal and of the stability

of the result. In addition, model fitting [11, 16] does not

implement disease characteristics, but rather is over-con-

strained by geometric prior. Other techniques use phase

information [8], which is not available from MR exams in

clinical study, or additional MR information specific to

bone segmentation [2], which would increase the exam

acquisition time. Although the latter [2] segmentation

approach most closely resembles the method reported here,

it would require an additional non fat saturated MR

sequence for fully automated bone segmentation.

Our developed fully automated method relying on easy-

to-gather input information from a single MRI acquisition

provides stable results, and is robust to the variable image

quality. This is reflected by the validation analyses using

quality metrics techniques such as for the bone surface, the

average surface distance (ASD) for the bone volume, the

Dice similarity coefficient (DSC), and the average oriented

distance between bone surfaces within the cartilage domain

which all demonstrated excellent data in terms of stability

and accuracy. Hence, the reported method leads to a fully

automated stable and reproducible knee bone reading and

allows the assessment of changes in pathological bone.

2 Method

2.1 Fully automated bone segmentation

2.1.1 Notations

The input information is a gray-level 3D MR image I in

which the gray level i at position (x, y, z) is such that

i = I(x, y, z). For notation simplification, the slices of an

MR image volume will be noted as the 2D images

Ix¼h � Iðx; y; zÞ=x ¼ hf g Iy¼c � Iðx; y; zÞ=y ¼ cf g
Iz¼t � Iðx; y; zÞ=z ¼ tf g ð1Þ

These 2D images, defined as 3D image restrictions, consist

of gray level values.

In the same way, we define the image domain X as the

set of all positions (x, y, z) and the slices as the restriction

for position sets: Xx¼h ¼ ðy; zÞ=Ix¼h [ 0f g, idem for Xy=c,

Xz=t. These 2D image domains are defined, respectively, as

axial, coronal, and sagittal slices.

2.1.2 Localization of the solution

In addition to the MR image, the Ray Casting technique

requires an approximate localization of both the femur

and the tibia. This is obtained by evaluating an

approximation of the femur’s interior noted IFemur � X
and an approximation of the tibia’s interior, ITibia � X.

Because the background and the bone are of the same

color and texture, the localization of the bones first relies

on an analysis of the leg tissues which is the biggest

sub-part of the image made of bright tissues. Then, leg

tissue layers are successively filtered until the inner bone

is found, providing an approximation of each bone as a

3D object. The overall process is detailed in the

Appendix.

2.1.3 Definition of observers

From the approximate bone objects, a series of 3D

positions inside each object, named ‘‘observers,’’ is

necessary as an input data for the Ray Casting technique.

The localization procedure for the observers is explained

only for the femur, since it is the same for the tibia. A

height h is determined on the axial axis at the location

where IFemurx=h becomes a single connected component,

as shown in Fig. 1. At this height h, we assume the set

IFemurz¼t;x¼hðyÞ � IFemurx¼h=z ¼ t for each z = t to

also be a single connected component set. This set

provides the most internal point c in the femur by:

cðzÞ ¼ 1

2
max ðy 2 IFemurz¼t;x¼hÞþ

1

2
min ðy 2 IFemurz¼t;x¼hÞ for z ¼ t ð2Þ

Note that it can happen that IFemurz=t,x=h is in more than

one component. In such a case IFemurz=t,x=h is replaced by

its largest component since it is a robust way to maintain

the path inside the femur.

This procedure allows the set of observers to be defined

as: o(z) = (h, c(z), z)
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2.1.4 Construction of the set C of discretized surfaces

for Ray Casting purposes

As a second input, the Ray Casting technique requires the

set C of all candidate interfaces, i.e., the interfaces between

the different tissues that can be extracted from the MR

image as illustrated by Fig. 1d.

The Laplacian operator [32] gives a binary map D of the

presence or absence of all tissue interfaces at each position

(x, y, z) in the MR images. Hence a set C, of all interface

positions (x, y, z) present in D, is computed. This set C is

illustrated in Fig. 1e as a precise frontier candidate of

Laplacian contours. The final solution consists of a selec-

tion of candidates among C using the Ray Casting tech-

nique as illustrated in Fig. 1f.

The femur or the tibia bones are represented as an object

V with object frontier qV. This frontier is contained in the

set of all possible frontiers, the set C. For Ray Casting

purposes, a ray R(o, D) is defined as the half-line starting

from o, in direction D, as shown in Fig. 1f.

Hence the projection into the subset of all possible fron-

tiers of the observer position o in direction D is obtained as an

intersection. This is the first intersection of the ray R(o, D)

with C. This projection is an element of qV, and is written as

p(o, D). This is geometrically illustrated in Fig. 1f.

2.1.5 Construction of the sagittal Ray Casting surface

using ray patterns

To select the frontier qV samples attainable by rays from o,

ray patterns were used. The first example of ray pattern is

the circular parameterization parallel to each 2D Cartesian

plane (x, y). If h is the angle defined on the unit circle of the

(x, y) plane, and M the sample set size of selected angles

(e.g., M = 315), as shown in Fig. 2a, the ray pattern is

obtained as:

CircularðoðzÞÞ ¼ pðoðzÞ;Dðh1ÞÞ ; . . .; pðoðzÞ;DðhMÞÞf g

For a sagittal observer o(z), an example of Circular (o(z))

samples is shown in Fig. 2b. The result is a sequence of

points describing a contour in the image. Using multiple

observers Z ¼ oðz1Þ; . . .; oðzNÞf g, the circular patterns are

combined to obtain a sagittal cylindrical pattern (Fig. 2c),

using M the sample set of possible observers as:

Fig. 1 a Representative axial MR image reconstructed from sagittal

acquisition; b IFemurh (white contour) is used to locate the observers

o(z) in the bone along each slice describing a path (dotted black line);

c 3D schematic representation showing the observer path in the first

distal axial slice where IFemurh is in a single component; d represen-

tative sagittal MR image; e the Laplacian contour set C which is

further used by the Ray Casting technique to precisely locate the

solution; and f the projection of the observer position on the object

frontier at all angles h. o(z) is the observer position in the current

image, R(o, D(h)) is the ray launched from the observer in direction

D(h), and p(o, D(h)) is the location of the first intersected contour of

set C. Sampling [0, 2p] with h enables identification of surface

qV delimiting volume V
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CylindricalðZÞ ¼ fCircularðoðz1ÞÞ; . . .;CircularðoðzNÞÞg

Since Cylindrical (Z) is a bivariate discrete set by defini-

tion, it leads naturally to a discrete surface. But using bi-

cubic spline smoothing interpolation, a continuous closed

spline surface noted CylindricalðZÞ was obtained, whose

interpolation nodes were given by Cylindrical (Z). Finally,

the sagittal Ray Casting surface was the surface

CylindricalðZÞ
Of note, it can happen that set C of discretized surfaces

is not closed while some holes can occur in low contrast

zones (e.g., Fig. 2b in the tibia). In such a case, the surface

sample ‘‘escapes’’ at infinity. However, this situation,

which occurs only in extra articular areas, affects the sur-

face generation only very locally, preserving the accuracy

of the solution. This contrasts with watershed or region-

growing based methods [2, 14] in which the entire solution

is affected.

The Ray Casting technique allows the segmentation of

local bone growth as shown in Fig. 2d, e. Such bone pro-

trusion which can appear on as few as one or two slices

may not be captured by model-based segmentation [10, 16]

in which this shape would be taken as an error.

2.1.6 Controlled surface filtering: first step for solving

occultation difficulties

Signal quality or bone geometry may preclude the seg-

mentation process from achieving the proper detection of

the bone interface. A smoothing strategy is first applied to

remove imperfections that are due to the presence of edges

inside the bone (acquisition artifacts or bone lesions) or

missing boundaries.

For this aim, we chose the median filter to preserve

edges of objects that are wider than half of the filtering

window size, as other filtering approaches, e.g., average or

Gaussian filter, would systematically fade all edges. Then,

an operation of median filtering followed by a restoration is

applied iteratively to the bone surface in the cylindrical

coordinate system. The purpose of the median filter is to

remove imperfections from the surface while the restora-

tion preserves the measured surface where the filtering

action is smaller than a threshold. The first iteration allows

the threshold to be computed as 2*sigma of the evolution

between measured and filtered data but no less than

1.3 mm. At each iteration, the restored surface is marked

and is excluded from further processing. In addition, the

Fig. 2 a Description of Ray Casting, b a sagittal slice of D shows

circular(o(z)) samples, and c the cylindrical set. Of note, an open

interface (b white circle) may provoke samples to escape at infinity.

d, e A case of bone segmentation where the osteophyte (white arrow o
in d) is completely captured by the segmentation strategy (black
arrow o (e)). f, g two examples of the surface of bone (dotted line)

after controlled surface filtering of the Ray Casting detected bone

surface (solid line). f Complete segmentation of the femur which

contains an osteophyte (arrow o). g Filtering of a major bone marrow

lesion (arrow b) as well as a small osteophyte (arrow o). Osteophyte

(o) and bone marrow lesion (b)
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size of the filtering window increases from 1 by 10 mm up

to 11 by 40 mm, the maximum number of iteration being

five. The parameters used allow the filtering of imperfec-

tions up to 20 mm in the sagittal plane by 5.5 mm in the

transversal direction. Most infinity sample escapes are then

managed by this approach. Figure 2f illustrates the effect

of the controlled surface filtering process on the bone

contour in one sagittal MR image: the process enables the

filtering of osteophytes and bone marrow lesions, obtaining

the final bone surface of the sagittal analysis.

2.1.7 Solving occultation by merging sagittal and axial

segmented bone surfaces

To handle specific morphologies, the presence of bone

lesions or extreme positioning of the knee during acquisi-

tion that may preclude the capture of the entire bone

surface, we implemented an additional Ray-casting seg-

mentation process in the axial plane. This additional seg-

mentation was chosen to be performed in the axial rather

than in the coronal reconstructed images as this orientation

best addresses the issue of a missing surface. Therefore, a

technique referred to as the combination operator � was

developed to merge several segmented objects into a single

one as illustrated by the 2D example in Fig. 3.

The initial sagittal segmentation result is used as a new

description of the femur’s interior. This time, two sagittal

slices are chosen at the central position of each condyle.

For both condyles, a family of observers parameterized in

coordinate x is set in the posterior of the condyle assuming

the orientation of the acquisition. Once these new families

of observers are automatically defined, an axial segmen-

tation is processed. The step by step procedure is formu-

lated as follows. First, the interior ISFemur of SFemur �
CylindricalðZÞ is constructed by performing a detection by

Ray Casting algorithm. Then, starting from more precise

information on the interior than the approximation IFemur,

the two families of observers are computed, in the mean

slice of left condyle l and in the mean slice of right condyle

r, respectively, located in the two sagittal slices ISFemurz=l

and ISFemurz=r.

ISFemurz=l is a bounded surface in coordinate x and y in

one connected component (Fig. 4a) and ISFemurx¼h;z¼l ¼
ISFemurz¼l=x ¼ h (Fig. 4b) is expected to be a single

component. If not, it is replaced by its largest component.

The observer position is set near the posterior boundary of

the component by weighting the maximum part of the

segment by a parameter a close to 1:

cl xð Þ ¼ a max y 2 ISFemurx¼h;z¼l

� �
þ 1� að Þmin

y 2 ISFemurx¼h;z¼l

� �
for x ¼ h

cr xð Þ ¼ a max y 2 ISFemurx¼h;z¼r

� �
þ 1� að Þmin

y 2 ISFemurx¼h;z¼r

� �
for x ¼ h

ð3Þ

This leads to the set of observers parameterized in x as

olðxÞ ¼ ðx; clðxÞ; lÞ orðxÞ ¼ ðx; crðxÞ; rÞ: ð4Þ

and to two families of observers describing a path.

The new axial Ray Casting surfaces are then obtained

by using a circular parameterization parallel to each

2D Cartesian plane (y, z) and a set of observers defined

along the axial dimension (Fig. 4c). This set is given by

Xr ¼ orðx1Þ; . . .; orðxNÞf g and Xl ¼ olðx1Þ; . . .; olðxNÞf g
(Fig. 4d), leading to the axial Ray Casting surfaces

CylindricalðXrÞ and CylindricalðXlÞ. By convention, if the

observer is parameterized in a dimension, the angles of the

rays are within the two others, e.g., for Xr and Xl the angle

is defined on the unit circle of the (y, z) plane. The final

global surface solution combining all the three surfaces is

then:

Femur ¼ CylindricalðZÞ � CylindricalðXrÞ
� CylindricalðXlÞ ð5Þ

An example of occultation due to the morphology, condyle

refolding, is illustrated in Fig. 4d where an axial slice of

the object is delimited by CylindricalðZÞ. Because a part

was occulted during the first sagittal segmentation, the

condyle refolding was not totally segmented. The addition

of axial observers or(x) and ol(x)in each condyle, right and

left, solved the problem.

Figure 4e, f are sagittal views of the axial slices in

Fig. 4a, b, respectively, illustrating the enhancement

obtained by merging the Ray Casting surfaces of the

Fig. 3 An example in which the object of interest D (light gray) has

an outer and an inner interface; D is the union of the Ray Casting

solution A, B and C found using different observers initialized inside

D. The solution using the combination operator selects the outermost

contour of the object
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segmented object. This merged segmentation succeeds in

overcoming difficulties such as the presence of bone mar-

row lesions frequently observed in osteoarthritic bone

(Fig. 5).

The developed fully automated segmentation processing

time for a single patient is *25 min, including about

1 min for the initial approximation of bone location,

12 min for the initial sagittal segmentation and another

Fig. 4 a Illustration of the location of additional observers in the

sagittal plane (dark gray) in the center of the condyle to process the

additional segmentation in the axial plane (light gray). b, c
Representative MRI axial slices of b incomplete segmented object

delimited by CylindricalðZÞ; and c completion by axial observers

or(x) and ol(x) and fusion. White arrows indicate the condyle

refolding and the black arrows indicate the rays launched from

observers. d Representation of the path followed by the sagittal

observers, o(z), and axial observers, ol(x) and or(x). e Representation

of MRI sagittal slices of incomplete segmented object delimited by

CylindricalðZÞ and f combined result. In e and f, white arrows indicate

the condyle refolding, black arrows indicate the rays launched from

o(z) (black dot)

Fig. 5 a Representative MR images of sagittal underestimated segmentation due to the presence of a bone marrow lesion (white arrow). b The

segmentation strategy allows proper segmentation eliminating the lesion (black arrow), final bone interior (gray) and frontier (white line)
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12 min for the two additional axial segmentations (see flow

diagram, Fig. 6).

2.2 Cohort description and MRI acquisition

MR images of patients with knee osteoarthritis were

obtained from a recently published study [29]. In brief,

patients with primary symptomatic knee osteoarthritis of

the medial tibiofemoral compartment were recruited from

outpatient rheumatology clinics. Knee MR images from

161 osteoarthritis patients (aged 60 ± 8 years, Kellgren-

Lawrence grade 2–3) corresponding to the according to

protocol (ATP) population were used. The study was

approved by the local ethics committees and all patients

gave their oral and written informed consent to participate.

The MRI exams were carried out at five different sites

and acquisitions were performed using 1.5 Tesla apparatus

with integrated knee coil. The sequence consisted of opti-

mized 3D-FISP acquisition with water excitation (Siemens,

Erlangen, Germany) (Tr/Te = 22/9 ms, WaterExcitation,

FoV = 160 9 160 mm, Matrix = 512 9 410, ST/SS = 1/

0 mm, FlipAngle = 14�, Phase = AP) or 3D-SPGR

acquisition with fat suppression (General Electric, Mil-

waukee, WI) (Tr/Te = 42/7 ms, FatSaturation, FoV =

160 9 160 mm, Matrix = 512 9 410, ST/SS = 1/0 mm,

FlipAngle = 20�, Phase = AP). Rectangular FOV was

adjusted to the various patient morphologies to optimize

the acquisition time; the output image resolution was

0.3125 9 0.3125 9 1.0 mm.

2.3 Validation

The developed fully automated bone segmentation was

compared with validated semi-automated bone segmenta-

tion [18]. This semi-automated method was chosen because

it is a validated method based on a completely different

technique, 3D active contours, and which relies on ongoing

quality control performed by the segmentation technician

who initializes the reading. The inter-reader coefficient of

this semi-automated segmentation was shown to be

excellent (r = 0.97) for osteoarthritis patients [27]. The

automatic segmentation was successfully performed on all

the MR images of the study. The validation involves three

types of comparison: the ASD, the average oriented surface

distance, and the DSC.

In addition, the stability of the presented technology was

evaluated using test–retest MR images, i.e., during the MR

exam the patient was removed from and repositioned in the

apparatus between the test and the retest acquisitions. MR

images of four patients with knee osteoarthritis (seven test–

retest images of left and right knees) were assessed in a

blinded manner and were used to evaluate the reproduc-

ibility of the system using the ASD.

2.3.1 Bone surface

Comparison was first performed using the ASD [13]

between each sample of both bone surfaces (a) obtained by

the fully automated and the semi-automated methods for

the same image or (b) obtained by the fully automated

method for test–retest images of the same knee. This

reflects either the different position of a contour vis-à-vis

the same bone frontier in the image, or different options of

segmentation. Since bone segmentation is a first step to

articular marker assessment, an additional comparison was

performed; the average oriented distance between bone

surfaces within the cartilage domain with the semi-auto-

matic bone segmentation [18].

Fig. 6 Flow diagram of the general strategies for the fully automated

knee bone segmentation in MR images
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2.3.2 Volume

Bone volume DSC was performed to compare the bones

obtained by automatic and semi-automatic segmentation

[18]. Commonly used in comparing techniques is the DSC

[13] that is expressed for a single patient P as DSCðPÞ ¼
2 VsemiðPÞ \ VautoðPÞj j= VsemiðPÞj j þ VautoðPÞj jð Þ; giving a

mean result for a cohort of patients as DSC ¼
1= Pj j

P

P

DSCðPÞ.

The bone volume does not include all the bone in

each image since neither semi-automatic nor automatic

method could capture bone boundaries in the proximity

of the upper and lower borders of the acquisition volume

due to lack of contrast. Thus, the bone volume was

artificially closed proximally for the femur and distally

for the tibia, taking into account the presence of semi-

automatic and automatic segmentation contours. Hence,

for each patient P, the volume was defined as the 3D

volume enclosed by the semi-automatic or automatic

bone closed at the upper limit (femur) and lower limit

(tibia) defined by the presence of semi-automatic and

automatic contour.

3 Results

3.1 Bone surface

With regard to the distance between the semi-automatic

and automatic bone surfaces, the ASD values were

0.50 ± 0.12 mm (median 0.48 mm [0.28–0.87]) for the

femur and 0.37 ± 0.09 mm (median 0.35 mm [0.25–0.70])

for the tibia. When these values are compared to the

acquisition resolution of 0.3125 mm, the ASD is

1.60 ± 0.38 pixels for the femur and 1.18 ± 0.29 pixels

for the tibia. Of note, the ASD standard deviation is less

than half a pixel.

For the test–retest evaluation, the measurements showed

an excellent reproducibility with an average of less than

half a pixel resolution and maximum value of less than a

pixel for the femur, 0.19 ± 0.02 mm (median 0.18 mm

[0.16, 0.22]) as well as for the tibia, 0.19 ± 0.03 mm

(median 0.19 mm [0.14, 0.24]).

The evaluation of the average oriented distance

between the semi-automatic and automatic bone surfaces

within the cartilage domain gives values of 0.02 ±

0.07 mm (median 0.00 mm [-0.14, 0.29]) for the femur

and -0.05 ± 0.10 mm (median -0.06 mm [-0.36,

0.33]) for the tibia. The average denotes the absence of

systematic bias between both segmentations and the

standard deviation indicates low changes in segmentation

option.

3.2 Volume

The average bone volume DSC comparing semi-automatic

and automatic methods showed excellent values:

0.94 ± 0.05 (median 0.96 [0.74–0.98]) was obtained for

the femur and 0.92 ± 0.07 (median 0.95 [0.74–0.98]) for

the tibia.

3.3 Localization of osteophytes and their volume

evaluation

An osteophyte is an outgrowth of the bone close to the

bone-cartilage interface and such structure is a character-

istic of osteoarthritis. Although the volumetric measure-

ment could be of major importance in the diagnosis of this

disease and in clinical studies, to our knowledge, there is

no report on a quantitative assessment of osteophytes in the

human knee joint. Interestingly, our method, by taking the

benefit of intermediate results further, permits osteophyte

volume to be assessed.

For measurement of this structure, an osteophyte anal-

ysis domain was restricted to each bone metaphysis and

epiphysis. For the femur, the osteophyte domain was

defined on the femur bone surface by the largest object

starting at the lower limit of the condyle and being equal to

its convex shell. For the tibia, as there is no anatomic

criterion that could be used, the domain was defined on the

tibia bone surface by the object delimited by a plane 2 cm

under the upper limit of the tibia epiphysis. In the

respective domains, the geometric characteristic of

the osteophytes can be localized by direct subtraction of the

measured bone surface (see Sect. 2.1.6) from the filtered

bone surface (see Sect. 2.1.5) limited to the osteophyte

analysis domain in the cylindrical coordinate system. A

selection of all the positive values corresponds to the areas

of osteophytes. Once localized, the osteophyte volume can

be evaluated in mm3 and consists of the volume enclosed

between the non-filtered and the filtered bone surface for

both bones or for subregions.

4 Discussion

We reported the development and validation of a fully

automated method for human knee bone (femur and tibia)

segmentation on MR images taking into account the char-

acteristics of the process which occurs in this tissue during

osteoarthritis. Validation experiments comparing the devel-

oped fully automated method with a semi-automated seg-

mentation method revealed excellent correlations.

The developed method is based on the Ray Casting

technique which relies on the decomposition of the MR
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images into multiple surface layers obtained by a Laplacian

operator and on an approximation of the bone location

obtained by intensity thresholding. This allows surface

subset selection in the decomposed images which is then

merged to obtain the whole segmented object (see flow

diagram, Fig. 6). The Ray Casting technique was chosen to

overcome problems encountered with MR images, thus

producing a robust solution to the variable MR image

quality. The Ray Casting technique historically used for 3D

volume rendering [20] produces a geometric volume map

(volume segmentation), and was recently used in object

segmentation research for medical computer tomography

(CT) imaging [22] as well as for radar imagery [12, 24].

Hence, the fully automated knee 3D MRI bone segmen-

tation method presented in this study consists of the

extraction of the information necessary to the Ray Casting

followed by our implementation of the Ray Casting tech-

nique in which the surface selection process relies on prior

knowledge of some bone interior points obtained auto-

matically and autonomously using an approximation of the

bone location. Moreover, the absence of prior shape model

allows the use of the same technique for both the femur and

tibia.

The main characteristic of the Ray Casting approach is

its ability to process objects with discontinuous contour.

However, caution should be exercised as it could cause

leakage as seen with other non-model approaches [2, 14].

Moreover, although originally this technique only seg-

mented star-shaped objects, this has been geometrically

overcome by autonomously merging objects obtained

from different initializations. Compared to other approa-

ches, the simplicity and robustness provided by Ray

Casting is a great advantage. First, the presented algo-

rithm that works with only a few parameters automati-

cally extracted from the signal can overcome problems

encountered in a large scale imaging context, in which the

image is often corrupted by noise, partial volume effect,

or distortion. In addition, as this technique does not use a

prior shape model, there was no need to model the

influence of the disease on the shape geometry. This

contrasts with other techniques that use average shape

models [14, 23] or impose geometric priors [16] on the

shape of the segmented objects, which do not allow the

inclusion of disease characteristics. By being able to

detect bone irregularities, the developed method can allow

the detection, and quantitative evaluation of osteophytes.

Quantitative osteophyte measurement is of importance, as

the methods described in the current literature are per-

formed only on radiograph images and are semi-quanti-

tative. Such methods are not sensitive, are dependent on

the acquisition angle of the knee, and evaluate only the

osteophytes at the periphery of the bone and only at the

sides of the condyle and tibia. The automated method, as

described here, is quantitative and evaluates all the

osteophytes, i.e., peripheral and central (under the carti-

lage). Another bone alteration is the bone marrow lesion;

however, in this study, evaluation of these latter structures

was not performed as the sequence used was a T1* gra-

dient echo sequence known to underestimate their volume

[31].

A limitation of the controlled filter method design could

be that although extreme precautions were taken to enable

the correction of inner bone signal while preserving the

initial measurement, some exceptional configuration could

occur, e.g., significant Fat Sat failures, truncation artifacts

and strong flow artifacts, which should, at a certain point,

cause the rejection of the MR images. Similarly, thin

edemas widely spread near the bone interface could pre-

vent the filter from recovering the integrality of the bone

interface.

Validation experiments comparing the newly developed

fully automated method with the semi-automated method

revealed a very low deviation, less than half a pixel size,

when the ASD between the two bone surfaces was mea-

sured. However, the bone surface ASD obtained was better

than that of Fripp et al. [8] using additional information,

where a higher ASD value (0.73 mm) was obtained, but

contrasts with another Fripp et al. [9] reported data, using a

different methodology from the previous [8], a model

approach having a value of 0.16 mm on the bone-cartilage

interface. Of note, the Fripp et al. works were performed on

healthy individuals, and as is well-known, in osteoarthritis

patients the bone-cartilage interface delineation is more

difficult to achieve due to presence of osteophytes, of bone

lesions in the subchondral bone and in the bone marrow, in

addition to the lower image quality (mainly lower contrast

and lower quality of the edges) caused by excessive

synovial fluid. On the other hand, comparable DSC values

were found in the two Fripp et al. works [8, 9], where

values of 0.93 ± 0.03 and 0.92 ± 0.03 and 0.95 ± 0.06

and 0.95 ± 0.07 [8, 9] were found, respectively, for the

femur and tibia.

All together, the validation analyses performed on a

large osteoarthritis cohort revealed excellent results in

terms of stability and accuracy, highlighted by the low

standard deviation of the ASD, high volume correlation

coefficient and DSC. The slightly better results obtained for

the tibia compared to the femur may be explained by the

simpler geometry of its articular domain producing less

partial volume effects. Additional analyses looking at

the difference between the brand of MR apparatus used

(Siemens vs. GE) and the presence of bone marrow lesions

revealed no difference in ASD or DSC and no statistical

trend for ASD between the number of subregions in which

a bone marrow lesion was present (0–4 in the femur; 0–2 in

the tibia) (data not shown).
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As one of the main objectives for automatic bone seg-

mentation is to study the articular domain, the accuracy of

the automatic segmentation evaluated by the average ori-

ented distance between bone surfaces within the cartilage

domain provides a high level of confidence for knee

articular marker assessments.

A primary advantage of this newly developed automated

bone segmentation method is the possibility of intensive

and autonomous computation, enabling images from a

large cohort of patients to be analyzed in a shorter time

and, more importantly, increased stability of the reading.

Indeed, this method will prevent major problems encoun-

tered with the semi-automated segmentation method,

including contrast, intensity, and gamma tuning for the

image display, which have an important influence on the

final segmentation contours. From a clinical/physician

point of view the low ASD and high DSC of the presented

fully automatic method assure the accuracy of results.
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Appendix: Bone Localization Procedure

The Ray Casting technique requires some prior knowledge

including an approximation of the bone location to set the

observers in each image. This appendix describes the

autonomous procedure.

The analysis of the intensity histogram H shows a

mixture of two probability densities, one centered in the

low values, and the other in the high values. Because of its

stability and robustness, the Otsu’s algorithm [25] was

chosen to analyze the histogram, giving a decomposition of

the histogram as a sum of two Gaussian distributions N (ld,

rd) and Nðl
b
; r

b
Þ. The histogram’s dark tissue peak is ld

and bright tissue peak is l
b
. Values inferior to the dark

peak are called very dark and values superior to the bright

peak, very bright. Otsu’s algorithm also provides a decision

threshold s of separation between dark and bright, and

mixture parameters ad and ab, allowing the histogram to be

written:

HðIÞ ffi adNðld; rdÞ þ abNðl
b
; r

b
Þ with ad þ ab ¼ 1 ð6Þ

An algorithm was designed to capture IFemur and ITibia

on the MR image where the bones, femur and tibia (dark),

are surrounded by cartilage and muscle (very bright), fur-

ther surrounded by fat (dark), then skin (bright), and finally

the background (very dark).

One has to start from X and evaluate the following set in

order of decreasing size, where Leg is the leg, and MCart is

the cartilage and muscle set:

X � Leg � MCart � IFemur [ ITibiaf g ð7Þ

Let us define Hconvex (X) the convex hull of a finite set X.

Considering the decision threshold s, the anatomical

convexity of the leg in each axial slice, and the

brightness of the tissues, each axial subset of the leg can

be approximated by

Legx¼h � Hconvexfðy; zÞ Ix¼hðy; zÞ	 sg ð8Þ

In order to have an appropriate cartilage and muscle set,

surrounding femur and tibia, the selection relies on bright

intensity and on convexity properties. Thus, MCart can be

written as:

MCartx¼h � Hconvexfðy; zÞ 2 Legx¼h; Ix¼hðy; zÞ	 l
b
g
ð9Þ

Figure 7a, b shows two sagittal slices of the intermediate

results, the Legz=t set (Fig. 7a) and the MCartz=t set

(Fig. 7b).

Finally, the bone part inside this set can be identified by

the very dark tissue inside MCart such that:

IFemurTibiax¼h � ððy; zÞ 2 MCartx¼h; Ix¼hðy; zÞ
 ldÞ
ð10Þ

Femur and tibia sets are easily defined by separating the

two largest components of FemurTibia as shown in Fig. 7c

Fig. 7 a, b A sagittal slice of the image restricted to the Legz=t set

(a) and restricted to the smaller MCartz=t set (b). The black parts of

the slices denote the outside of each set while parts with image

content denote the inside of each set. c A representative sagittal slice

and d the sets Legz=t, MCartz=t, IFemurandITibia, respectively, in

dark, medium, light and bright gray
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and d, where the largest is the set Femur and the second

largest is the set Tibia. To facilitate the decomposition, an

opening morphology operator � is used [12] with

structuring disk D of small diameter, e.g. five pixels. The

set FemurTibia admits the following decomposition:

IFemurTibia � D ¼ IFemur [ ITibia
[ � � �Other small objects ð11Þ
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Beaudoin G, de Guise JA, Bloch DA, Choquette D, Haraoui B,

Altman RD, Hochberg M, Meyer JM, Cline G, Pelletier JP (2004)

Quantitative magnetic resonance imaging evaluation of knee

osteoarthritis progression over two years and correlation with

clinical symptoms and radiologic changes. Arthritis Rheum

50:476–487

Med Biol Eng Comput (2011) 49:1413–1424 1423

123

Author's personal copy



29. Raynauld JP, Martel-Pelletier J, Bias P, Laufer S, Haraoui B,

Choquette D, Beaulieu AD, Abram F, Dorais M, Vignon E,

Pelletier JP (2009) Protective effects of licofelone, a 5-lipoxy-

genase and cyclo-oxygenase inhibitor, versus naproxen on carti-

lage loss in knee osteoarthritis: a first multicentre clinical trial

using quantitative MRI. Ann Rheum Dis 68:938–947

30. Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W,

Bohndorf K, Guermazi A (2009) MRI-detected subchondral bone

marrow signal alterations of the knee joint: terminology, imaging

appearance, relevance and radiological differential diagnosis.

Osteoarthr Cartil 17:1115–1131

31. Wolf M, Welerich P, Niemann H (1997) Automatic segmentation

and 3D-registration of a femoral bone in MR images of the knee.

Pattern Recognit Image Anal 7:152–165

32. Yuille AL, Poggio TA (1986) Scaling theorems for zero cross-

ings. IEEE Trans Pattern Anal Mach Intell 8:15–25

1424 Med Biol Eng Comput (2011) 49:1413–1424

123

Author's personal copy


	A fully automated human knee 3D MRI bone segmentation using the ray casting technique
	Abstract
	Introduction
	Method
	Fully automated bone segmentation
	Notations
	Localization of the solution
	Definition of observers
	Construction of the set C of discretized surfaces for Ray Casting purposes
	Construction of the sagittal Ray Casting surface using ray patterns
	Controlled surface filtering: first step for solving occultation difficulties
	Solving occultation by merging sagittal and axial segmented bone surfaces

	Cohort description and MRI acquisition
	Validation
	Bone surface
	Volume


	Results
	Bone surface
	Volume
	Localization of osteophytes and their volume evaluation

	Discussion
	Acknowledgments
	Appendix: Bone Localization Procedure
	References


