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AIM: Since the majority of vertebral compression fractures (VCFs) are asymptomatic, they
often go undetected on opportunistic CT scans. To reduce rates of undiagnosed osteoporosis,
we developed a deep learning (DL)-based algorithm using 2D/3D U-Nets convolutional neural
networks to opportunistically screen for VCF on CT scans. This study aimed to evaluate the
performance of the algorithm using external real-world data.
MATERIALS AND METHODS: CT scans acquired for various indications other than a suspicion

of VCF from January 2019 to August 2020 were retrospectively and consecutively collected. The
algorithmwas designed to label each vertebra, detect VCF, measure vertebral height loss (VHL)
and calculate mean Hounsfield Units (mean HU) for vertebral bone attenuation. For the ground
truth, two board-certified radiologists defined if VCF was present and performed the mea-
surements. The algorithm analyzed the scans and the results were compared to the experts’
assessments.
RESULTS: A total of 100 patients (mean age: 76.6 years � 10.1[SD], 72% women) were

evaluated. The overall labeling agreement was 94.9% (95%CI: 93.7%e95.9%). Regarding VHL, the
95% limits of agreement (LoA) between the algorithm and the radiologists was [-9.3, 8.6]; 94.1%
of the differences lay within the radiologists’ LoA and the intraclass correlation coefficient was
0.854 (95%CI: 0.822e0.881). For the mean HU, Pearson’s correlation was 0.89 (95%CI: 0.84
e0.92; p-value <0.0001). Finally, the algorithm’s VCF screening sensitivity and specificity were
92.3% (95%CI: 81.5%e97.9%) and 91.7% (95%CI: 80.0%e97.7%), respectively.
CONCLUSIONS: This automated tool for screening and quantification of opportunistic VCF

demonstrated high reliability and performance that may facilitate radiologists’ task and
improve opportunistic osteoporosis assessments.
� 2025 The Authors. Published by Elsevier Ltd on behalf of The Royal College of Radiologists.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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Figure 1 Example of the three vertebral height measurements placed
at the anterior (blue), middle (green) and posterior (purple) aspects
of the vertebral body.
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Introduction

Vertebral Compression Fractures (VCF) of the thor-
acolumbar spine are commonly due to osteoporosis, but can
also result from trauma, infection or neoplasm.1 Genant’s
classification defines VCF as mild (vertebral height loss
(VHL) between 20-25%, grade 1), moderate (VHL between
25-40%, grade 2), and severe (VHL > 40%, grade 3).2 Verte-
brae with VHL � 20% are normal (grade 0).

VCF prevalence among Europeans over 50 years old
ranges between 18-26%.3 In the United States, approxi-
mately 1e1.5 million VCFs occur annually.4 VCFs are the
most common osteoporotic fractures after hip
fractures.5Women are considered to be at a higher risk with
25% of postmenopausal women experiencing VCF during
their lifetime.6

Despite their frequency, only 15e30% of VCFs are
symptomatic and only 30% receive medical attention. Early
signs are often undetected, leading to underdiagnosis and
undertreatment.3,7,8 Less than 10% of fractures visible on CT
images are mentioned in the radiology report9,10 resulting
in fewer patients receiving osteoporosis management plans
to prevent secondary fractures.11 Undetected VCFs signifi-
cantly decrease quality of life, double age-adjusted mor-
tality risk, and triple the risk of subsequent fractures
compared to the general population.3

Osteoporosis can be detected on CT scans acquired for
other medical indications by assessing vertebral fracture
and bone attenuation.3,6,7 This opportunistic analysis pro-
vides a fast and reliable alternative to additional dual x-ray
absorptiometry (DXA) exams.12 To reduce underdiagnosis,
the International Osteoporosis Foundation and the Euro-
pean Society of Musculoskeletal Radiology encourage ra-
diologists to report osteoporotic fractures on opportunistic
CT scans.13e16

Automated deep learning (DL)-based tools could assist
physicians in identifying patients with VCF on CT scans,
aiding in early detection, correct diagnosis, and reporting of
osteoporotic fractures.17 Algorithms for screening VCF on CT
scans have shown sensitivity and specificity ranging from
65% to 99%.17e22 Previous studies have analyzed algorithms
that provide selected components of the VCF diagnostic
pipeline, such as vertebral labeling or quantitative VCF
measures including VHL or mean Hounsfield Units (mean
HU) vertebral bone attenuation.23e30 However, no study has
simultaneously evaluated an algorithm, which provides all
four components of the VCF diagnostic pipeline to assist
physicians in osteoporosis assessment. Our study aimed to
evaluate a DL-based prototype algorithm designed to label
each vertebra, calculate VHL, detect positive VCF cases and
provide the mean HU. The software was previously trained
and validated internally, thus, this study aimed to validate
the software on real-world opportunistic CT scans acquired
as part of clinical routine from an external source. The
objective was to demonstrate that automated software can
evaluate four components of the VCF diagnostic pipeline
and may thereby improve the early detection of
osteoporosis.
Materials and Methods

Study design

This study was conducted with approval from our local
institutional medical ethics committee and received no
funding. It was a single-center, retrospective, observational
and cross-sectional diagnostic study with data collected as
part of clinical routine. It aims to compare the algorithm
results against the ground truth based on four objectives:

1. Labeling of each visible vertebra from T1-L5,
2. Quantifying of the percentage of VHL,
3. Detecting of cases with grade 2 or 3 VCF,
4. Measuring of the mean HU vertebral bone attenuation

within the first grade 0 or 1 vertebrae among L1-L4,
starting with L1.

Vertebral labeling consisted of identifying and naming
(e.g. “T3”) each thoracic and lumbar visible vertebra in
every case. The percentage of VHL, a measurement used to
evaluate the degree of a VCF,2 was computed for each visible
vertebra from T1-L5. The VHL were obtained based on the
reduction in the anterior, middle, and posterior vertebral
heights (ha, hm and hp- see Fig 1), following Genant’s
quantitative methodology.2

In order to analyze the vertebral compression detection,
a per-case-level analysis was conducted by considering one
case as positive if at least one vertebra presented a grade 2
or 3 VCF (moderate or severe deformity).2 ThemeanHUwas
calculated by placing a region of interest on the trabecular
bone at the first grade 0 or 1 vertebra in the range of L1-L4,
starting with L1. Indeed, if L1 has VHL > 25%, the mea-
surements are performed in L2, and so on.

Data collection

Chest-abdominal-pelvis (CAP) CT scans, acquired as part
of clinical routine from January 2019 to August 2020 for
medical indications other than suspicion of VCF (cancer,



Figure 2 (a) Example of placement of region of interest (ROI) for mean HU assessment in the first lumbar vertebra (L1). Axial image of L1 in bone
window (C: 300; W: 1600). A ROI is placed in the upper part of L1, between the endplate and the entrance of vessels at the midportion. The ROI
was as large as possible and positioned in a homogenous area without inclusion of the cortex. (b) Example of the 3 heights placed between the
anterior and posterior vertebrae cortical part at 20%, 50% and 80% of the vertebral body. Midsagittal vertebrae image in bone window (C: 300; W:
1600).
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HIV, neoplasia, infection, etc.) were retrospectively and
consecutively collected from our hospital. CT scans both
with and without contrast were accepted. All patients were
scanned on a 64-row scanner (LightSpeed VCT, GE Medical
Systems) in helical mode with a 0.625 mm slice collimation,
tube voltage of 120 kVp, and image matrix of 512 � 512. A
soft kernel was used and images were reconstructed at a
1.25 mm slice thickness. For contrast CTs, iohexol (Omni-
paque, GE Healthcare AS) with an amount of 90 mL was
used as a contrast agent.

All patients over 50 years old were eligible. Non-
inclusion criteria were material in the vertebrae or signifi-
cant artifacts. All eligible CT scans were transferred from the
hospital’s Picture Archiving and Communication System
(PACS) and the first 100 cases that met the described criteria
were consecutively included in the study.
Ground truth

In order to establish the ground truth (GT), two board-
certified radiologists with 19 and 7 years of experience
conducted the scan analysis. They labeled by consensus all
visible vertebrae from T1 to L5. For the VHL analysis, they
assessed the scans employing Genant’s methodology.2 Each
measurement consisted of three segments delineating the
anterior, posterior, and middle vertebral heights. The seg-
ments were placed on each visible vertebra in the sagittal
plane at a slice passing through the middle of the vertebral
body. This slice was chosen using theMPR view tominimize
bias by placing the coronal plane in the middle of the
vertebral body. The segments connected the middle of the
lower and upper cortical bone (Fig 2b). Deformations due to
the presence of Schmorl’s nodes were ignored in the VHL
measurements by considering the cortical lines of the
vertebral end-plates to be continuous. Both radiologists
analyzed the same cases separately, blinded to the analysis
of the other. The same two radiologists then jointly
reviewed the same cases and defined the final VHL ground
truth by consensus. Vertebrae containing cement or hard-
ware were excluded from measurement.

Regarding VCF screening, the analysis was performed at
a per-case level. The truthers defined, by consensus, a case
as positive (presence of at least one vertebra with a
compression fracture) after analyzing the visual appearance
of the vertebra, taking into account the confounding factors
(artifacts, Schmorl’s nodes, Scheuermann disease, etc) and
the measurements, as described by Genant’s method.2

For the mean HU, the experts placed an elliptical region
of interest (ROI) in the anterior part of the vertebral body
(without including the cortical bone, nodes, veins or
arthrosis signs) at an axial slice selected in the upper third
of the vertebra, as they usually do in clinical practice
(Fig 2a).31 Indeed, according to the literature, the assess-
ment of vertebral bone HU is most frequently performed on
L1 for thoraco-abdominal or abdominal scans32; but as
mean HU measurements on vertebrae with fractures are
deemed unreliable, the ROI was placed on the first unaf-
fected vertebrae (VHL <25% and without cement or hard-
ware) among the lumbar segment (L1-L4).33 One mean HU
measurement per case was performed by the GT. This study
did not incorporate any significant adjustments in HU
measurements, based on collective research suggesting that
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differences in trabecular BMD measurements between
contrast-enhanced and unenhanced CT scans are generally
minor and unlikely to affect osteoporosis prediction
significantly.34,35

Deep learning-based algorithm

The DL-based prototype algorithm was developed by
Avicenna.AI (CINA-VCF Quantix v0.60, La Ciotat, France). It
was trained on 12,402 vertebrae from 1353 CT cases ac-
quired in US and French centers during 2021 and 2022.
Datasets reflected the variety that exists in clinical settings,
with an adequate distribution in terms of CT manufacturers
(more than 64 scanner models from Siemens, Philips, GE
and Canon), patient age, patient gender, contrast presence,
field of view and slice thickness. Thoracic and lumbar
vertebrae were homogeneously represented and there was
a great diversity in the VHLs. The algorithm was validated
on a separate pilot dataset of 1,994 vertebrae from 152 cases
and achieved a sensitivity of 92% (95% CI: 82%e97%), a
specificity of 99% (95% CI: 93%e100%) and an accuracy of
96% (95% CI: 92%e99%) for VCF detection, an accuracy of
98% (95% CI: 94.3%e99.6%) for vertebral labeling, a LoA of
�10% for VHL and strong correlations (range of 0.6e0.8) for
mean HU measurements.

The application was designed using a cascade of task-
focused networks. They all feature architectures based on
2D and 3D U-Nets derived from Convolutional Neural Net-
works (CNNs),which performverywell in segmentation and
landmark regression tasks.36 The algorithm locates the spine
in order to reduce data size and standardize the field of view.
Each lumbar and thoracic vertebral body center is then
located and labeled. A post-processing step allows vertebrae
with cement or surgical material to be filtered out.The sub-
sequent phase identifies six measurement landmarks per
vertebra, which correspond to the endpoints of the anterior,
middle, and posterior measurement segments of the verte-
bral body (Fig 1). These landmarks enable the calculation of
the VHL for the corresponding vertebra. The last step uses
the segmentation of each vertebra of interest to place an
elliptical ROI at the axial section and calculate the mean HU.
Four results are automatically generated:

� The label of all visible thoracic and lumbar vertebrae.
� The VHL of each vertebra displayed in yellow, orange
and red for Genant’s grade 1, 2 and 3 VCF, respectively.2

� A passive notification for cases with at least one
vertebra with moderate or severe VCF.

� The mean HU within all healthy (grade 0 or 1 without
cementoplasty or hardware) vertebrae L1-L4.

The DL-based model is property of Avicenna.AI and can
be obtained upon reasonable request and with the approval
of the Regulatory Affairs Department of Avicenna.AI.

Statistical analysis

The labeling evaluation was conducted at the per-
vertebra level. The overall agreement percentage and 95%
the Clopper Pearson confidence interval (95% CI) between
the algorithm and the GT were computed. Vertebral height
loss (VHL) was compared using a BlandeAltman Plot by
calculating Limits of Agreement (LoA) at a per-vertebra level
between the algorithm and the GT, and between each in-
dividual truther. The percentage of differences between the
software and the GT that lie within the truthers’ LoA was
also evaluated. Moreover, the intraclass correlation coeffi-
cient was computed to assess the agreement between the
algorithm and the GT. For the VCF screening, the software’s
sensitivity, specificity and accuracy on a per-case level were
computed, together with their 95% CI.

The Pearson correlation coefficient was computed to
evaluate the linear relationship between the algorithm’s
mean HUmeasurements and the GT. For each case, only the
mean HUmeasured on the same vertebra by the GT and the
software were taken into account. In fact, the algorithm
provides mean HU measurements on all healthy vertebrae
(grade 0 or 1 without cement or hardware) among L1-L4,
but the GT measured only the first healthy vertebra among
this lumbar segment. All the statistical analyses were per-
formed using MedCalc Statistical Software (v20.015, Med-
Calc Software Ltd).

Prior to the analyses, an initial sample size calculation
was carried out for each metric based on conventional
clinicians’ performance,32,37 and assuming a significance of
5% (a-level) and a power of 80% (b-level of 20%). Regarding
vertebral labeling, expecting a 95% accuracy with 95%
confidence interval not wider than �5%, requires at least
239 vertebrae.38 For VHL measurements, an estimated ex-
pected mean of differences of -0.35, standard deviation of
differences of 4.5 and a maximum allowed difference be-
tween methods of 10.5, yields a minimum of 274 required
vertebrae.39 For VCF screening, at least 73 cases are required
for an expected sensitivity and specificity of 90%, a preva-
lence of 52% and a 95% confidence interval not wider than
�10%.40 Finally, for the mean HU, at least 9 cases are
required for a correlation coefficient of 0.8.41

Results

A total of 1,012 CAP CTs acquired between January 2019
and August 2020 were collected. 835 were rejected due to
age < 50 years, significant artifacts and/or presence of
material. From the remaining 177 cases, the first 100 were
consecutively selected. Among them, 11% were non-
contrast CT exams, mean age was 76.6 years (SD: 10.1)
and 72% were women. After the GT assessment, the rate of
positive exams (cases with at least one grade 2 or 3 VCF)
was 52%. Additional baseline characteristics are presented
in Table 1. From this cohort, 20 cases (340 vertebrae) were
randomly selected for VHL measurements. A flowchart of
the cohort selection is shown in Fig 3. There was no missing
data.

Labeling of vertebrae

A final cohort of 1,700 vertebrae (100 CTs x 17 vertebrae
each) was analyzed. 17/1700 (1%) of vertebrae presented



Table 1
Patient and CT scans characteristics.

Characteristic Cases without VCF
(n ¼ 48, 816
vertebrae)

Cases with VCF
(n ¼ 52, 884
vertebrae)

Female, n (%) 35 (72.9%) 37 (71.2%)
Age (years), mean � SD 78.13 � 10.2 78.5 � 9.5
Contrast CT, n (%) 42 (87.5%) 47 (90.4%)
Mean HU � SD per vertebraa 133.6 � 48.1 109.2 � 33.9
Number of vertebrae

with VCF, n (%)
0/816 (0%) 178/884 (20.1%)

a Mean HU within all grade 0 or 1 vertebrae among L1-L4.
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cement or hardware and were thus excluded from analysis.
The overall agreement between the software and the GT
was 94.9% (95% CI: 93.7%e95.9%). Discrepancies were
mainly caused by L5 lumbar sacralization or strong spine
local curvature. An example of labeling is presented in Fig 5.
Vertebral height loss measurements

All the VHL measurements defined by the GT were
compared to those of the artificial intelligence (AI) tool. A
total of 340 vertebrae from 20 patients were measured by
Figure 3 Flowchart of th
the GT but 4/340 (1.2%) were excluded from analysis due to
presence of cement. The 95% LoA between truther 1 and
truther 2 were [-8.1, 11.3]. Between the AI-based device and
the GT the 95% LoA were [-9.3, 8.6] and 94.1% (317/337) of
the differences between the AI and the GT lay within the
ground truthers LoA’s. Also, the mean difference between
the software and the GT was -0.4, indicating a negligible
systematic bias. ICC between truther 1 and truther 2 (inter-
rater reliability) was 0.864 (95% CI: 0.816e0.897) and be-
tween the algorithm and the GT was 0.854 (95% CI:
0.822e0.881). Figure 4 presents the BlandeAltman Plot for
the VHLmeasurements and Fig 5a shows an example of VHL
measurements provided by the algorithm.
VCF detection

Thewhole dataset (100 cases, 52% positive) was included
in the per-case analysis of the device’s ability to detect a
grade 2 or grade 3 VCF. The results for sensitivity, specificity
and accuracy are presented in Table 2. Regarding the dis-
crepancies, 3/4 of false negatives (FNs) and 3/4 of false
positives (FPs) were cases close to the grade 2/grade 3
boundary, with VHL around 25% according to the software
(i.e. 24.2%, 23.8%, 22.5% for FNs; and 25.5%, 27% and 27.1% for
e final study cohort.



Figure 4 (a) BlandeAltman plot between AI and GT with 95% limits of
agreement. (b) BlandeAltman VHL plot between both radiologists
with 95% limits of agreement.
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FPs) and hence, very close to the positive threshold. One
example of these FNs is shown in Fig 5b. The remaining FN
was due to a compression not visible in the plane passing
through the midsagittal plane of the vertebral body and the
remaining FP was caused by the natural deformation of L5.
Mean HU vertebral bone attenuation

The linear regression analysis of the mean HU calculated
by the software and the GT was computed on a per-case
level. Among the 100 cases, 7/100 (7%) cases were
excluded because the mean HU was not measured on the
same vertebra (e.g., the algorithm detected L1 as com-
pressed and thereforemeasured themean HU form L2 to L4,
while according to the GT, L1 was not compressed so the
operator measured the mean HU at L1). The Pearson cor-
relation coefficient was 0.89 (95% CI: 0.84e0.92; p-value
<0.0001), indicating a strong correlation between the al-
gorithm and the GT. Figure 6 presents the scatter diagram of
the mean HU measurements and Fig 5a presents an
example of the mean HU provided by the DL tool.
Discussion

Vertebral labeling, VHL assessment, vertebral fracture
detection and mean HU measurements are essential in
spine processing workflowand significantly associatedwith
osteoporotic vertebral fractures.3 Using routine CTs for
opportunistic osteoporosis screening reduces costs and ra-
diation compared to DXA exams.12 The Royal Osteoporosis
Society prioritizes opportunistic detection of osteoporosis
and VCF from CT.16 This is the first proof of concept study
evaluating the performances of four components of an
automated AI software expected to improve the early
detection of osteoporosis on CT scans.

The software demonstrated proficiency in vertebral la-
beling by correctly naming 94.9% of vertebrae and opti-
mizing a time-consuming clinical task. Our results align
with the state of the art which presents accuracies ranging
from 84.62% to 97.5% for similar algorithms.23e28

Regarding the VHL, the software’s measurements closely
matched human variabilities, with 94.1% of differences be-
tween the AI device and the GT falling within the range of
the truthers’ disagreements. Clinicians’ 95% LoA for con-
ventional assessments range from�5.97 to�11.75 for intra-
rater agreement and �7.25 to �12.53 for inter-rater
agreement.37 FDA-cleared devices reported 87.5%e96.06%
of differences lie within the truthers’ 95%
LoA.27,29 Moreover, the device reported an ICC of 0.85, sur-
passing the range of 0.53e0.82 typically reported for con-
ventional clinicians’ assessments.37

VHL measurement differences should be considered
relative to the VHL percentage. A 15% difference between
the GT and software for a vertebra with 10% VHL is more
critical than for one with 40% VHL. In the first situation the
case will fall into the wrong category (positive rather than
negative) and the software will alert the radiologist for a
vertebra that is not compressed, which is considered a
critical situation. In the second case, even with a 25% error
in measurement, the degree of vertebral compression re-
mains significant, justifying the alert. In our study, we ob-
tained lower discrepancies in vertebrae with VHL< 15% and
most of the greatest differences were observed in vertebrae
with VHL > 30% (highly compressed). Indeed, as the
vertebra becomes smaller, even a minor error can have a
notable impact on the predicted VHL. For example, for one
case, the GT detected a VHL of 78% and the AI a VHL of 49%,
yielding a difference of 29%. Even if the measurement was
not accurate, the software was able to flag a case requiring
patient care.

The software demonstrated robust performance at a per-
case level in opportunistic VCF detection, classifying posi-
tive and negative cases with a sensitivity of 92.3% and a
specificity of 91.7%. Misclassifications primarily occurred in
borderline cases that were even difficult to assess by the
radiologists. These results are consistent with the literature;
other AI algorithms obtained sensitivities ranging from



Figure 5 Example of the software results. (a) For this case, T8, L2 and L4 were considered as grade 2 compressions (VHL of 26.9%, 35.1% and
27.7%, respectively), and T12 as grade 3 compressions (VHL of 49.1%), according to the ground truth. The other vertebrae were considered as
grade 0 or 1 compressions. The algorithm identified T8 and L2 as grade 2 (orange color) and T12 as grade 3 (red color). Regarding the mean HU,
the ground truth measured 85 HU for L1. All the vertebrae were correctly labeled by the AI. (b) Example of a false negative case. The truthers
detected a VHL > 25% at T4 while the algorithm detected a VHL of 24.2%, very close to the threshold limit.

Table 2
AI per-case VCF detection performance (TP ¼ true positives, FN ¼ false
negatives, FP ¼ false positives, TN ¼ true negatives).

Statistic Per-case analysis (n ¼ 100)

Sensitivity (95% CI) 92.3% (81.5%e97.9%)
TP ¼ 48; FN ¼ 4

Specificity (95% CI) 91.7% (80.0%e97.7%)
TN ¼ 44; FP ¼ 4

Accuracy (95% CI) 92.0% (84.8%e96.5%)

Figure 6 Mean HU linear regression relationship between the ground
truth and the AI.
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65%-98.7% and specificities ranging from 65%-95.8%, with
misdiagnosis occurring when vertebrae were slightly
deformed.17e22 Similarly, radiologists in clinical routine
presented accuracies ranging between 82%-94%, and most
misreported cases were due to a lack of information
regarding patient’s history of osteoporosis or relative de-
formations18,37 This DL tool provided reliable results com-
parable to previous findings for VCF screening. It accurately
alerts physicians about opportunistic VCF, enabling early
diagnosis and patient management.

A Pearson correlation coefficient of 0.89 between the AI
mean HUmeasurements and the GT indicated a high degree
of linear relationship. A similar software obtained a Pearson
correlation coefficient of 0.8,30 which is in line with our
results. In clinical routine, mean HU measurements are
predictive of future fragility fractures and correlate with
DXA-based bone mineral density (BMD) analyzes and
osteoporosis prediction.7,12,42 Radiologists’ assessments for
mean HU are considered reliable with intraclass correlation
coefficients ranging from 0.70 to 0.94.32,43,44 In opportu-
nistic cases, these measurements are typically not con-
ducted. Therefore, a rapid, precise, and automated mean HU
measurement could streamline radiologists’ tasks and
enhance BMD analyses.

This study has limitations. First, the retrospective selec-
tion of patients over 50 with CAP CT may cause selection
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bias. Second, the small cohort limits rare confounding fac-
tors and reduces statistical power. Third, being a single-
center, single-scanner study may affect generalizability.
The algorithm may exhibit a different performance when
applied to images from other scanners due to variations in
image quality, noise characteristics, and scanning protocols.
However, since it was trained in more than 64 scanner
models from 4 different scanner manufacturers, the varia-
tions are likely minimal. Further research with multiple
scanners and institutions is needed to assure a valuable
transferability. A prospective study would also be valuable
to assess real-time data and the impact of opportunistic VCF
detection on patient management and outcomes. Addi-
tionally, therapeutic management should involve general
practitioners and rheumatologists.

In conclusion, these results highlight the AI-based tool’s
potential to expedite accurate assessments, particularly in
opportunistic cases where such measurements are not
commonly performed. These functionalities provide a reli-
able and accurate system that may assist clinicians’
decision-support systems, reduce misdiagnosed rates and
improve patient care.
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