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Cost-Effectiveness of Opportunistic
Osteoporosis Screening Using Chest
Radiographs With Deep Learning in
the United States
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Abstract

Objectives: Deep learning models applied to chest radiographs obtained for other clinical reasons have shown promise in oppor-
tunistic osteoporosis screening, particularly among middle-aged to older individuals. This study evaluates the cost-effectiveness of this

approach in US women aged 50 years and over.

Methods: An economic model, incorporating both a decision tree and a microsimulation Markov model, estimated the cost
per quality-adjusted life-year (QALY) gained (in 2024 US dollars) for screening via chest radiographs with deep learning,
followed by treatment, versus no screening and treatment. The patient pathways were based on the sensitivity and specificity
of artificial intelligence-enhanced radiographs. Real-world medication persistence, realistic assumptions for probabilities of
dual-energy x-ray absorptiometry examination postscreening detection and for treatment initiation rates were incorporated.
Women with osteoporosis were stratified into high risk (receiving alendronate monotherapy for 5 years) and very high risk
(receiving an 18-month anabolic treatment with abaloparatide followed by 5 years of alendronate). Parameter uncertainty

was analyzed through sensitivity analyses.

Results: The opportunistic screening strategy improved health outcomes, yielding more QALYs and fewer fractures while increasing
treatment costs. The cost per QALY gained of opportunistic screening was estimated at $72,085 per QALY gained among women 50+,
remaining below the US cost-effectiveness threshold of $100,000 per QALY. Further improvements in cost-effectiveness could be
achieved by optimizing follow-up, treatment initiation, and medication adherence.

Discussion: This study underscores the cost-effectiveness and public health value of opportunistic, artificial intelligence-driven
screening osteoporosis screening using existing chest radiographs, demonstrating its potential to improve early detection and
address unmet diagnostic needs in osteoporosis care.
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INTRODUCTION

Advancements in artificial intelligence (Al) are transforming
health care by offering innovative solutions to long-standing
challenges, particularly in areas such as early disease detec-
tion [1]. Often referred to as a “silent disease,” osteoporosis is
common and linked to reduced bone strength and higher
fracture risk. It often goes undiagnosed until a fracture
occurs, leading to substantial health care costs, lower quality
of life, and excess mortality. Traditional diagnostic methods,
such as dual-energy x-ray absorptiometry (DXA), the gold
standard for assessing bone mineral density (BMD), face
barriers such as technical complexity, limited accessibility,
costs, and the need for specialized equipment. These limita-
tions restrict the applicability of DXA for widespread
screening and diagnosis at the population level [2].

Recent advancements in deep learning have shown promise
in addressing these challenges. Deep learning-based models
using chest radiographs have demonstrated favorable perfor-
mance in the opportunistic screening of osteoporosis, particu-
larly in middle-aged and older adults [2]. In this context,
opportunistic screening refers to the use of chest radiographs
that were originally acquired for other clinical indications (eg,
evaluation of respiratory symptoms), rather than for the
purpose of osteoporosis detection. This approach offers a
scalable and accessible way to detect osteoporosis, especially in
the large proportion of women over 50 who are eligible for
BMD but remain unscreened. By leveraging existing imaging
studies, this strategy does not rely on additional imaging and
may enhance the value of already-collected data. By enabling
carlier diagnosis and treatment through opportunistic screening,
Al-driven analysis of chest radiographs could help reduce the
burden of osteoporotic fractures.

Although the clinical validation of deep learning models
has shown encouraging outcomes [2], assessing their cost-
effectiveness is equally important. Economic evaluations
help to optimize health care resource allocation and guide
reimbursement decisions. Such studies are crucial to deter-
mine the value of these Al-driven approaches and support
informed decision making.

The aim of this study is therefore to estimate the cost-
effectiveness of opportunistic osteoporosis screening using
deep learning applied to chest radiographs originally ob-
tained for other clinical purposes compared with no
screening and treatment in US women aged 50 years and
above.

MATERIALS AND METHODS

This economic study evaluated the cost-effectiveness of
opportunistic osteoporosis screening using chest radio-
graphs analyzed with deep learning, followed by treatment,

compared with a scenario with no screening and treatment
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that reflects real-world conditions in which screening pro-
grams are often absent, leaving most patients untreated.
Importantly, our analysis does not propose chest radio-
graphs as a primary screening test or a replacement for
DXA, but rather as an adjunct opportunistic approach that
leverages imaging already obtained for other clinical in-
dications. Since the chest radiographs are not ordered spe-
cifically for osteoporosis screening, the comparison to “no
screening” remains appropriate to evaluate the incremental
value of this pragmatic strategy in identifying individuals
who would otherwise remain undetected. The analysis
employed a two-part economic model developed in Tree-
Age Pro 2024 R1.0 software (TreeAge Pro Inc, William-
ston, Massachusetts): a decision tree to outline the screening
pathways and a Markov microsimulation model to project
long-term costs and outcomes. Table 1 presents the key
parameters used in the model.

Decision Tree

As shown in Figure 1, the opportunistic screening strategy
used Al-enhanced chest radiographs, which operated ac-
cording to the tool’s sensitivity and specificity. A subset of
patients suspected of having osteoporosis subsequently un-
derwent a confirmatory DXA test. Diagnosed patients were
stratified into high risk (HR) or very high risk (VHR)
groups. Based on treatment initiation rates, HR patients
received alendronate (ALN) monotherapy, and VHR pa-
tients were prescribed sequential therapy with an anabolic
first.

Markov Microsimulation Model

Following recommendations [3-5], we employed a previously
validated Markov microsimulation model to track fracture and
simulate health outcomes and costs up to 100 years [3,6,7].
The model accounted for hip fractures, vertebral fractures,
and nonhip nonvertebral (NHNV) fractures, allowing for
multiple fractures at the same site or different sites.

Population and Transitions Probabilities

The analyses focused on US women aged 50 years and
older, segmented into 5-year age groups using US Census
data. Five groups were simulated: women without osteo-
porosis, women at HR or VHR, each with or without
treatment. Osteoporosis prevalence, defined as affecting the
femoral neck, lumbar spine, or both, was estimated at
13.1% for women aged 50 to 64 years and 27.1% for those
aged 65 years and older, based on data from the 2017 to
2018 National Health and Nutrition Examination Survey
[8]. Expert opinion estimated 20% of detected patients as
VHR. In the model, women at VHR were assumed to
have had a recent fracture (in addition to having a BMD
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Table 1. Key model parameters

Parameter

Incidence (annual rate per 100) of fracture [10,11]
Hip

Vertebral
NHNV

Increased relative risk due
to osteoporosis [12]
Hip
Vertebral
NHNV
Increased relative risk of subsequent
fracture after a fracture [13]
1st fracture

2nd and more fracture

Mortality excess [3,45]
Hip (0-6 m / 7-12 m / subs. year)
Vertebral (0-6 m / 7-12 m / subs.
year)
NHNV (0-12 m)
% Attributable to fracture
First-year cost of a first and subsequent

Data

0.029 (50-54 y), 0.057 (55-59 y), 0.105 (60-64 y), 0.203 (65-69 y),
0.394 (70-74y), 0.793 (75-79 y), 1.447 (80-84 y), 2.606 (85+y)
0.064 (50-54 y), 0.132 (55-59 y), 0.124 (60-64 y), 0.233 (65-69 y),
0.473(70-74y), 0.523 (75-79), 0.622 (80-84 y), 1.095 (85+y)
0.820 (50-54 y), 1.340 (55-59 y), 1.597 (60-64 y), 1.722 (65-69 y),
2.106 (70-74y), 2.722 (75-79Y), 3.256 (80-84 y), 3.923 (85+y)

5.659 (50-59 y), 3.390 (60-69 y), 2.250 (70-79 y), 1.570 (80+)
2.680 (50-59 y), 2.176 (60-69 y), 1.772 (70-79 y), 1.514 (80+)
2.250 (50-59 y), 1.902 (60-69 y), 1.610 (70-79 y), 1.416 (80+)

2.1 (0-6 months), 2.0 (7-12 months), 1.9 (13-18 months), 1.7 (19-24
months), 1.6 (25-36 months), 1.5 (37-48 months), 1.5 (49
months+)

2.4 (0-6 months), 2.1 (7-12 months), 1.8 (13-18 months), 1.7 (19-24
months), 1.7 (25-36 months), 1.5 (37-48 months), 1.5 (49
months—+)

4.54 (3.56-5.88) / 1.76 (1.43-2.16) / 1.78 (1.33-2.39)
4.54 (3.56-5.88) / 1.76 (1.43-2.16) / 1.78 (1.33-2.39)

1.38 (1.18-1.62)
25

fracture (estimated in 2024 US dollars) (adjusted from [18])

Hip
1st fracture
Subs. fractures
Vertebral
1st fracture
Subs. fractures
NHNV
1st fracture
Subs. fractures
Fracture costs (estimated in 2024 US dollars)
for year 2 up to year 5 (adjusted from [18])
Hip
Commercial
Medicare
Vertebral
Commercial
Medicare
NHNV
Commercial
Medicare
Health state utility values [19,20]
Baseline utility
RR after hip (1sty / subs. y)
RR after vertebral (1st y / subs. y)
RR after NHNV (1st y / subs. y)
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123,804 (50-64 y), 78,309 (65+ y)
59,960 (50-64 y), 46,653 (65+ Y)

30,307 (50-64 ), 21,586 (65-+ y)
62,577 (50-64 ), 36,233 (65+ y)

14,544 (50-64 y), 19,586 (65-+ y)
30,029 (50-64 y), 32,877 (65+ y)

11,182 (year 2), 7,815 (year 3), 6,155 (year 4), 3,680 (year 5+)
7,922 (year 2), 5,887 (year 3), 4,194 (year 4), 3,000 (year 5+)

8,483 (year 2), 4,686 (year 3), 2,656 (year 4), 1,807 (year 5)
5,962 (year 2), 4,237 (year 3), 3,035 (year 4), 2,246 (year 5)

1,818 (year 2), 1,135 (year 3), 664 (year 4), 390 (year 5)
2,422 (year 2), 2,096 (year 3), 1,381 (year 4), 1,308 (year 5)

0.837 (50-59 y), 0.706 (60-69 y), 0.671 (70-79 y), 0.630 (80+ y)
0.55 (0.53-0.57) / 0.86 (0.84-0.89)
0.68 (0.65-0.70) / 0.85 (0.82-0.87)
0.79 (0.65-0.93) / 0.95 (0.81-1.09)

(continued)

Cost-Effectiveness of Al-Enhanced Chest Radiographs for US Osteoporosis Screening



Table 1. Continued

Parameter

Effects on fracture (expressed as relative risk
compared to placebo) of medications [25,26]
Hip

Data

ABL 0.63 (0.41-0.98)
ALN 0.67 (0.48-0.96)
Vertebral
ABL 0.16 (0.06-0.42)
ALN 0.45 (0.31-0.65)
NHNV
ABL 0.42 (0.25-0.70)
ALN 0.81 (0.68-0.97)
Persistence rate, % [27]
ABL 59.1
ALN 35.1 (17.5 from year 3)
Drug cost (US$ per year) [46]
ABL 32,004
ALN 35

Nondrug costs
General physician visit
DXA 66.3
Screening pathway

140.6

Sensitivity, %; specificity, % [21] 86.16; 74.19
Cost 19.9

% DXA after OP suspected 50
Treatment initiation after OP 57

diagnosed

ABL = abaloparatide; ALN = alendronate; DXA = dual-energy x-ray absorptiometry; m = month; NHNV = nonhip nonvertebral, OP =

osteoporosis; Subs = subsequent; RR = relative reduction.

T-score <—2.5) to meet the American Association of
Clinical College of

Endocrinology criteria [9], and those at HR were

Endocrinology/American

assumed to have no previous fracture (but having a BMD
T-score <—2.5).

Baseline incidences of hip and vertebral fractures in the
US general female population, used for women without
osteoporosis in the model, were based on Ettinger et al [10],
which also informed the development of the US Fracture
Risk Assessment Tool scores. The incidence of NHNV
fractures including wrist, pelvis, and other fractures was
derived from Burge et al [11]. The increased fracture risk
in women with BMD T-score <—2.5 was calculated
using a previously validated method [12]. Additionally,
the elevated risk of fractures due to a prior fracture, at
baseline for VHR patients and during simulation for
other groups, was modeled based on a large Swedish
study [13].

Baseline mortality rates for US women, stratified by age
for 2020, were obtained from official data published by the
National Vital Statistics System. Consistent with previous
studies, increased mortality after hip, vertebral, and NHNV
fractures were included in the model [4,7,14]. Since excess

4

mortality may also be attributable to comorbidities, only
25% of the excess mortality after fractures was attributed
directly to the fractures themselves [15,16].

Fracture Costs and Quality of Life

Our analysis takes a health care sector perspective, with
health care costs presented in 2024 US dollars, adjusted
using the Consumer Price Index for Medical Care when
relevant. A 3% discount rate was applied to both costs and
quality-adjusted life-years (QALYs), following US guidelines
[17]. Incremental costs for the first 5 years after hip,
vertebral, and NHNV fractures were based on estimates
from Tran et al, which estimated Medicare and commercial
incremental costs for fractures [18]. For hip fractures, the
incremental cost from year 5 in Tran et al's study was
projected across the patient’s lifetime, accounting for long-
term nursing home admissions and related expenses.

Utility data were sourced from a report on nationally
representative values for the noninstitutionalized US adult
population, based on EuroQol 5-dimension scores [19].
The impact of fractures on utility was obtained from the
International Costs and Utilities Related to Osteoporotic
Fractures Study [20].

Journal of the American College of Radiology
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Very high risk-
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e 20%
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detected No treatment
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AlLenhanced Osteoporosis No treatment ®
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radiographs No osteoporosis No treatment
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1-probA No osteoporosis No treatment
®
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®
Prevalence
No osteoporosis No treatment
®

1-prevalence

Fig. 1. Decision tree for osteoporosis screening and treatment pathways in US women aged 50 years and over. Al = artificial
intelligence; DXA = dual-energy x-ray absorptiometry; probA = probability of osteoporosis suspected with Al-enhanced
chest radiographs; probB = probability of osteoporosis confirmed after DXA test.

Opportunistic Screening and Treatment
Strategies

The sensitivity and specificity of Al-enhanced chest radio-
graphs, from Jang et al [21], are estimated at 86.16% and
74.19%, using a predefined threshold of 0.5. Chest
radiographs were collected from a mix of clinical settings to
ensure diversity and generalizability. For internal validation,
images primarily originated from routine medical care, such
as general health screenings, periodic checkups, and
evaluations of clinical symptoms like cough or fever, at the
Health Screening and Promotion Center of Asan Medical
Center, representing an asymptomatic population. All chest
radiographs were acquired following standardized protocols of
the Asan Medical Center Radiology Department, typically
using a tube voltage of 100 to 130 kVp with patient-specific
adjustments. To address technical variability, images under-
went standardized preprocessing (eg, z-normalization, histo-
gram matching), and data augmentation techniques were
applied to enhance model robustness against common im-
aging inconsistencies. External validation incorporated chest
x-rays from various real-world sources, including outpatient
clinics, inpatient wards, emergency departments, and inter-
national institutions. Only standard posteroanterior view chest
radiographs were used in this study. Anteroposterior and
lateral views were excluded to ensure consistency and maintain
alignment with clinical standards for routine adult chest

imaging.
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Expert opinion suggested that 50% of patients suspected
of having osteoporosis proceed to a DXA and 57% initiate
osteoporosis medication after a positive DXA [22]. Patients
classified as HR received 5 years of oral ALN, and those
categorized as VHR were treated with sequential therapy
[23]: 18 months of treatment using an anabolic agent
(ABL) followed by 5 years of ALN, in line with the
American Association of Clinical Endocrinology/American
College of Endocrinology guidelines [17].

Treatment assumptions matched previous economic
rescarch on US women with osteoporosis for both
sequential and monotherapy treatments [7,14,24]. The
fracture risk reduction from ABL over 43 months came
the ACTIVE/ACTIVExtend Intention-To-Treat
trial [25], showing significant reduction in hip, vertebral,
and NHNV. Risk reductions during ALN treatment were
based on the National Institute for Health and Care
Excellence meta-analysis (TA464) [26].

Consistent with findings from ACTIVExtend, the ef-
fects of ABL remained constant during ALN treatment,

from

with a gradual linear decrease over 1 additional year after
ALN discontinuation. Similarly, the effects of ALN were
assumed to decline linearly to zero over a period comparable
to the treatment duration, in line with previous economic
studies [3].

We assigned a cost of $140.60 for each general physician
visit (based on Medicare costs for a 45-min visit), occurring

Cost-Effectiveness of Al-Enhanced Chest Radiographs for US Osteoporosis Screening



every 6 months during treatment. The Medicare cost for a
DXA scan, including additional related costs, was estimated at
$66.34, with scans assumed every 2 years during treatment.
Costs of medication adverse events, such as hypercalcemia with
ABL and gastrointestinal risks with ALN, were incorporated
into the analysis, based on previous studies [4]. The cost of
screening was assumed to be 30% of the DXA cost in the
base case, amounting to $19.90. Since our analysis assumes
that chest radiographs are obtained for clinical indications
other than osteoporosis screening, the costs of acquiring
these images are not attributed to the screening intervention.
Real-world medication persistence was incorporated
into the base-case analysis using data from Cheng et al [27]
that analyzed 10,863 US women who initiated anabolic
therapy (teriparatide) and oral bisphosphonates. The 12-
month persistence rate for teriparatide, applied to ABL in
the model, was 59.1%, consistent with other studies. For
ALN, the 12-month persistence rate was 35.1%. A lower
persistence rate of 17.5% was assumed for ALN from year 3
onward [28]. Medication costs, treatment efficacy and offset
times were all adjusted based on the persistence rates.

Analyses

Based on 5,000,000 individual simulations, the model
estimated total health care costs, fractures, life-years, and
QALYs for both the opportunistic osteoporosis screening
followed by treatment and the no screening and treatment
scenarios. The primary outcome was the incremental cost-
effectiveness ratio (ICER), which quantifies the additional
cost required by the opportunistic screening to gain 1 extra
QALY. In the United States, the Institute for Clinical and
Economic Review considers strategies with a cost per QALY
gained below US$100,000 to $150,000 as high value in
health care [29].

Multiple sensitivity analyses were conducted to assess the
robustness of the results. One-way sensitivity analyses were
performed by varying one parameter at a time across both
screening pathway and nonscreening parameters. Screening
pathway parameters were then varied to account for uncer-
tainty, including adjustments of £50% for the percentage of
patients undergoing DXA after osteoporosis detection,
osteoporosis prevalence, treatment initiation rates, and the
proportion of VHR patients. Additional scenarios included
full medication adherence and a scenario with a 50%
reduction in medication nonpersistence rates. Screening costs
were varied between 10% and 50% of DXA costs. A
threshold cost analysis was also conducted to identify
screening costs that would result in an ICER of $100,000.

Nonscreening parameters were also tested, including
fracture incidence varied by +25%, fracture costs varied by
£25%, and the effects of fractures on utilities adjusted by
£25%. A societal perspective was also incorporated by
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including the indirect costs of fractures, based on the study
by Tran et al [30]. Recognizing that opportunistic review of
chest radiographs may reveal incidental findings requiring
further evaluation, we conducted a one-way sensitivity
analysis varying the per-patient cost of downstream follow-
up. This parameter ranged from $5 to $20, in $5 in-
crements, reflecting plausible estimates of additional health
care resource use associated with incidental findings.

To evaluate the impact of joint uncertainty across model
variables, a probabilistic sensitivity analysis was conducted. In
each of the 200 iterations, comprising 250,000 micro-
simulations per iteration, random values were sampled for
nearly all model variables based on their assigned probability
distributions (details provided in e-only Appendix A). The
results of the probabilistic sensitivity analysis were
summarized using a cost-effectiveness acceptability curve,
which depicts the proportion of simulations in which oppor-
tunistic osteoporosis screening was considered cost-effective at
varying willingness-to-pay thresholds per QALY gained.

Model Validation

The study followed economic evaluation guidelines for
osteoporosis from the European Society for Clinical and
Economic Aspects of Osteoporosis, Osteoarthritis and
Musculoskeletal Osteoporosis
Foundation [3] and the 2022 Consolidated Health
Economic Evaluation Reporting Standards statement [31].

Diseases-International

The completed Consolidated Health Economic Evaluation
Reporting Standards 2022 checklist and the European
Clinical

Osteoarthritis  and

Society for and Economic Aspects of

Osteoporosis, Musculoskeletal
Diseases-International Osteoporosis Foundation check-
lists are available in e-only Appendix B. To verify the model’s
robustness, validation steps included protocol review by a US
clinical expert before analysis, sensitivity analyses with
alternative assumptions to confirm expected outcome patterns,
and comparison of model predictions with published data.
Specifically, the model estimated that approximately 980,000
fractures (including 205,000 hip fractures) occur annually
among US women aged 50 and older with osteoporosis. This
figure is consistent with data from the Bone Health and
Osteoporosis Foundation, which reports around 2,000,000
fractures, including 300,000 at the hip. The discrepancy is due
to a significant proportion of fractures occurring in men and

women without low bone mass.

RESULTS

In the base-case analysis, the opportunistic screening strategy,
based on the performance of Al and other inputs, predicts
that 79.9% of patients would not have osteoporosis, and
0.8% of VHR patients would receive sequential therapy,
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3.2% of VHR patients would remain untreated, 3.4% HR
patients would be treated with ALN monotherapy, and
12.7% of HR patients would remain untreated.

Base-Case Analysis

Table 2 presents the lifetime costs, number of fractures, life
years, QALYs, and the ICER (expressed in US dollars per
QALY gained) of the opportunistic osteoporosis screening
followed by treatment compared with no screening and
treatment in US women aged 50 years and above. Under
real-world conditions, per 1,000 screened women, the in-
cremental lifetime costs were $109,000, with health care
savings of $99,000 offset by treatment costs of $208,000.
The opportunistic screening strategy resulted in the pre-
vention of 2.8 fractures and an increase of 1.5 QALYs,
yielding an ICER of $72,085 per QALY gained. This value
is below the US cost-effectiveness thresholds of $100,000 to
$150,000 per QALY, suggesting the cost-effectiveness of
the strategy.

Sensitivity Analyses

Sensitivity analyses confirmed the cost-effectiveness of oppor-
tunistic osteoporosis screening (Fig. 2). Medication adherence
was a key factor: Reducing nonpersistence by 50% improved
the ICER to $28,663, and full adherence lowered it further
to $16,414. Higher osteoporosis prevalence, increased
treatment initiation, and more DXA scans after osteoporosis
detection moderately improved cost-effectiveness. Screening
costs have a relatively limited impact on ICER, ranging from
$63,311 (when screening costs are 10% of DXA costs) to
$80,858 (at 50% of DXA costs). A threshold analysis indicated
that the Al-tool cost of $62.10 would result in an ICER of
$100,000. Increasing VHR patients by 50% raised the ICER
to $87,718. Using specificity and sensitivity from the internal
test had minimal impact on cost-effectiveness.

Sensitivity analyses of nonscreening parameters revealed
that treatment efficacy, fracture incidence, drug costs, dis-
count rates, and fracture-related costs moderately affect cost-
effectiveness, with the ICER staying below $120,000 even in
conservative scenarios. In contrast, excess mortality after
fractures and fracture effects on utility had a limited impact.
Interestingly, adopting a societal perspective lowered the
ICER of $53,129, reflecting greater economic benefits. In the
one-way sensitivity analysis assessing the impact of down-
stream follow-up costs for incidental findings, the ICER was
$75,391 when the per-patient cost was set at $5, $78,697 at
$10, $82,004 at $15, and $85,310 at $20.

Figure 3 displays the cost-effectiveness acceptability
curves, illustrating that opportunistic osteoporosis screening
is the most cost-effective strategy at the US threshold of
$100,000 per QALY gained. It has an 82% probability of
being cost-effective with real-world adherence, and a 99.5%
with full adherence. At a higher threshold of $150,000 per
QALY gained, these rise to 92.5% and 100%, respectively.

DISCUSSION

The study results indicate that opportunistic osteoporosis
screening using chest radiographs enhanced by deep learning,
followed by appropriate treatment, represents a cost-effective
intervention for US women aged 50 years and older. The
ICER was estimated at $72,085 per QALY gained, which
falls below the US cost-effectiveness threshold of $100,000
to $150,000 per QALY, as recommended by the Institute for
Clinical and Economic Review [29]. Interventions with
ICERs below this range are generally considered cost-
effective in the US context. Sensitivity analyses confirmed
the robustness of these findings, demonstrating consistent
cost-effectiveness across varying assumptions. Key factors
influencing cost-effectiveness included screening follow-up,
treatment initiation rates, medication adherence, treatment
efficacy, screening age, drug costs, and fracture incidence.

Table 2. (Incremental) lifetime costs, QALYs, number of fractures prevented, and ICER of opportunistic osteoporosis
screening with artificial intelligence chest radiographs versus no screening and treatment in US women aged 50+

Opportunistic

Outcomes Screening
Total costs 24,574
Health care costs 24,366
Treatment costs 208
Number of fractures 0.939
Life-years 16.755
Quality-adjusted life years 8.0309

ICER of opportunistic screening
($ per QALY gained)

No Screening

and Incremental Incremental
Treatment per Women per 1,000 Women

24,465 109 109,000
24,465 -99 —99,000

0 +208 +208,000
0.942 —0.0028 2.8
16.754 0.0010 1.0
8.0294 0.0015 1.5

72,085

ICER = incremental cost-effectiveness ratio; QALY = quality-adjusted life-year.
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A
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B Societal perspective 53,129 .
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Fig. 2. Tornado diagrams depicting sensitivity analyses of cost-effectiveness ($ per QALY gained) for opportunistic osteo-
porosis screening with artificial intelligence-chest radiographs followed by treatment versus no screening and treatment in
US women aged 50+. (A) Screening pathway parameters and (B) nonscreening parameters. DXA = dual-energy x-ray ab-

sorptiometry; NHNV = nonhip nonvertebral; QALY = quality-adjusted life-year; VHR = very high risk.

Interestingly, the analysis revealed that the intervention
remained cost-effective as long as additional cost of the Al
tool did not exceed $62 per patient.

With the growing osteoporosis burden due to the aging
population in the US and the important treatment gap, it is
important to find solutions to detect patients at risk.
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Although DXA is available and recommended for patients
over 65 years of age by the US Preventive Services Task
Force, osteoporosis diagnosis remains rare. Opportunistic
Al-driven screening could thus serve as an alternative and
complementary technique to identify at-risk patients earlier
and cost-effectively.
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150000 200000

Willingness to pay ($ per QALY gained)

Fig. 3. Cost-effectiveness acceptability curves of opportunistic osteoporosis screening with artificial intelligence-chest ra-
diographs followed by treatment versus no screening and treatment in US women aged 50 with full and real-world
medication adherence. The curves illustrate the probability that the opportunistic osteoporosis screening is cost-effective at
various cost per QALY gained thresholds. This is represented by the proportion of simulations in which the screening strategy
proves to be cost-effective compared with no screening and treatment. A strategy with a probability exceeding 50% is
considered the cost-effective choice. QALY = quality-adjusted life-year.

This cost-effectiveness study builds on the performance
of the Al-enhanced screening tool reported in the study by
Jang et al [21]. This tool is among the few validated on an
external dataset, specifically using data from a health care
facility and targeting the diagnosis of osteoporosis (T-score
<-2.5) [32-34]. Although the field is stll in its early
stages, with most Al-based solutions remaining at the
proof-of-concept phase, accumulating evidence highlights
the potential for broader integration of Al into radiologic
workflows [35]. Although research on Al-driven screening
interventions in other disease areas has demonstrated cost-
effectiveness [36,37], and in some cases dominance [38],
this study reinforce the potential economic benefits of Al
in osteoporosis care, as also suggested by a similar study in
Germany, reporting an ICER of €13,340 in its base case
[39]. In addition, another cost-effectiveness study found
that Al-based opportunistic screening for osteoporotic
vertebral compression fractures using existing radiographs
was cost-effective from a societal perspective [40].
of Al-driven
screening could play a key role in influencing reimburse-

The demonstrated cost-effectiveness
ment decisions and encouraging the adoption of Al tools in
clinical practice. By showing that Al models can improve
early detection at a reasonable cost per QALY gained, this
approach not only has the potential to enhance patient
outcomes but also offers a sustainable, scalable solution for
managing osteoporosis at the population level. Policymakers
could leverage this evidence to prioritize funding for Al-

Journal of the American College of Radiology
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driven health care solutions, improving accessibility and
reducing long-term health care costs associated with osteo-
porotic fractures. Furthermore, Al screening could be
particularly useful in tailoring approaches to reduce health
care disparities, especially in underserved or resource-limited
regions.

The findings of this economic study should be inter-
preted with certain limitations in mind. First, some model
parameters relied on expert opinion and uncertainties remain
regarding follow-up after screening, such as the proportion of
patients undergoing DXA and initiating treatment after a
positive result. Additionally, as is common in health eco-
nomic modeling, input data were drawn from multiple
sources, including studies on screening effectiveness, costs,
udilities, and disease incidence. Although necessary for
building a comprehensive model, combining data from
various studies may introduce variability due to differences in
populations and settings. The distribution of HR and VHR
patients in an opportunistic screening approach is also un-
certain. However, the model showed strong robustness, with
results remaining stable across a wide range of sensitivity
analyses. Incorporating real-world data in future studies
could refine these estimates and enhance the accuracy of cost-
effectiveness assessments. The base-case analysis, which
supported cost-effectiveness, was grounded in realistic as-
sumptions regarding screening follow-up and medication
adherence. Additionally, the model’s screening pathway was
intentionally simplified, making it a conservative estimate of

9
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potential benefits. For instance, the model excluded treat-
ment for patients with osteopenia, despite some guidelines
support, due to limited data on diagnostic accuracy and un-
certainties on how many patients would actually receive
treatment.

Other diagnostic tools such as DXA, radiofrequency
echographic multispectrometry, quantitative CT, or quan-
titative ultrasound are also available for early diagnosis of
osteoporosis, and they have been shown to be cost-effective
in certain circumstances [7,41]. Although DXA remains the
clinical reference standard for osteoporosis diagnosis, its use
is often limited by accessibility, cost, and underutilization in
asymptomatic populations. Importantly, screening tools are
not necessarily mutually exclusive but can instead be
complementary. This is also relevant because chest
radiographs are not routinely performed for all women aged
50 years and older in the United States, meaning some
patients with osteoporosis will remain undetected with this
approach as well. However, Al-driven opportunistic
screening using chest radiographs leverages imaging already
acquired for other clinical reasons such as general health
screenings, periodic checkups, and evaluations of symptoms
like cough or fever. This approach offers a simpler and more
practical. This enables osteoporosis detection without extra
imaging, reducing patient burden and health care costs.

Another limitation of this study is that we did not ac-
count in the base-case analysis for downstream costs associ-
ated with incidental findings unrelated to osteoporosis that
may be identified during the review of chest radiographs for
opportunistic screening. Although our model assumes that
the chest radiographs are obtained for existing clinical in-
dications, the implementation of Al tools could increase the
detection and follow-up of incidental findings. This may lead
to both potential clinical benefits and additional health care
costs. Future research should explore the scope and impli-
cations of these downstream effects more comprehensively.
Finally, although this study supports the cost-effectiveness of
opportunistic osteoporosis screening for US women aged 50
and older, the findings may not be directly generalizable to
all other countries and populations due to differences in
health care systems and costs, fracture incidence, treatment
practices, and drug costs. Further analyses in men, in which
osteoporosis medications have shown benefits comparable to
those in women [42], as well as similar cost-effectiveness

[4,43], would be

effectiveness of Al screening in men. As the fracture risk

important to confirm the cost-
estimates in this study were derived from data on White
women and racial and ethnic differences are documented in
the US [44], suggesting the need for further research in more
diverse populations.

In conclusion, this study suggests that opportunistic

osteoporosis screening using Al-enhanced chest radiographs
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is a cost-effective strategy for US women aged 50 and older.
Improving follow-up and medication adherence could
further enhance its value. These findings highlight the public
health potential of Al-driven screening to improve early

detection and address gaps in osteoporosis care.

TAKE-HOME POINTS

Current osteoporosis screening faces significant gaps, with
many at-tisk individuals undiagnosed and untreated.

Al-enhanced analysis of existing chest radiographs en-
ables opportunistic osteoporosis screening, improving
early detection in women aged 50 and older.

Economic modeling showed cost-effectiveness of oppor-
tunistic osteoporosis screening using Al-enhanced chest
radiographs, with a cost of $72,085 per QALYs gained,
below the US threshold of $100,000.

Cost-effectiveness could be optimized when screening
is paired with effective follow-up, timely treatment

initiation, and adherence strategies.
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This study underscores the cost-effectiveness and public health signif-
icance of Al-driven screening, demonstrating its potential to improve
early detection and address unmet diagnostic needs in osteoporosis care.
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