
Osteoarthritis (OA) is a leading cause of 
disability worldwide and one of the most 
common chronic illnesses, accounting 
for 40–60% of patients with degenerative 
diseases of the musculoskeletal system1. OA 
is now recognized as an independent risk 
factor for increased mortality2,3. This disease 
places a huge burden on health-​care services 
(accounting for 1–2.5% of the gross national 
product in Western countries)4, and the cost 
of OA to these services is expected to double 
by 2020 and again by 2030 (ref.5).

OA can affect many joints but is 
commonly localized in the weight-​bearing 
joints and most frequently occurs in the 
knee6. Although the main outcome of 
this disease is cartilage destruction, OA is 
thought to affect all the tissue structures 
of the joint7. The major risk factors for 
OA are age (affecting more than half of 
the world’s population aged 65 and older), 
female sex and obesity8–10. OA can be 
roughly divided into idiopathic (primary) 
and secondary (has a known cause, such 
as trauma) OA. Idiopathic OA affects 
the majority of patients and is difficult to 

diseases, such as other arthritic diseases. 
An important hurdle to overcome in OA 
management is the identification of patients 
who might benefit the most from such 
drugs or preventive measures, including 
individuals at an early stage of the disease 
or those for whom the disease is not too 
severe but might progress rapidly. However, 
existing methods for assessing patients with 
OA do not provide enough comprehensive 
information to make robust predictions 
or prognoses.

In short, current clinical diagnostic 
procedures do not adequately fulfil the need 
of clinicians to help patients reduce their 
risk of disease progression or the need of 
the health-​care industry to develop effective 
new DMOADs. Prediction models that 
are capable of analysing large amounts of 
patient data are needed. The factors involved 
in OA pathogenesis and, importantly, 
the interactions between these factors 
need to be identified and incorporated 
into prediction models. Although 
conventional statistical models exist, 
these methods cannot handle massive 
amounts of information. Hence, there is a 
considerable need to develop comprehensive 
patient-​specific risk assessment models 
using machine-​leaning approaches that take 
into account all the factors and variables 
and their interactions. The development 
of computer-​based prediction models for 
analysing large data sets is a promising 
area in health care in fields such as cancer, 
genomics and biology13–16.

In this Perspectives article, we discuss 
the potential of data mining approaches 
incorporating statistics and machine 
learning in the development of prediction 
models for OA as well as important aspects 
of these approaches. We also evaluate 
current prediction models for OA and 
discuss lessons that can be learnt for 
future models.

Developing OA prediction models
Predictive modelling in medicine involves 
the development of models that are capable 
of analysing data to predict outcomes 
for an individual. Although historically 
prediction modelling has involved the use 
of conventional statistical methods, the 
use of artificial intelligence approaches such 
as machine learning (Box 1) can result in 

define as its precise aetiology is not known. 
From a clinical standpoint, idiopathic 
OA represents a heterogeneous group of 
disorders with different subgroups that have 
varying causes and include different clinical 
and pathological manifestations. For many 
patients with OA, disease progression can 
be slow and span many years; however, at 
least 10% of patients with OA have a rapid 
disease progression that can lead to the need 
for total joint replacement11.

At present, diagnosis of OA occurs 
mainly during the moderate to severe (late) 
stage of the disease, by which point the joint 
tissue often has already become irreversibly 
damaged. Importantly, no treatment is 
currently approved by regulatory agencies 
to cure the disease or prevent disease 
progression. Current medications are 
effective only at relieving symptoms and/or 
pain, and their use could induce major 
adverse events and even mortality12. Progress 
in developing disease-​modifying OA drugs 
(DMOADs) or therapies that stop or reduce 
progression of joint tissue deterioration 
is slow and lagging behind that of other 
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models that process complex data quickly 
and efficiently (Fig. 1). These advanced 
approaches are based on algorithms  
that have been specially designed to deal 
with the uncertainty and imprecision 
typically found in clinical and biological 
data sets.

The OA field has been relatively slow in 
adopting advanced analytical techniques 
compared with other diseases and fields 
such as cancer, neuroscience and genomics, 
to name a few, which could be related to the 
volume and complexity of the data available 
in different OA databases as well as large 
amounts of missing data. Other reasons 
could be a previous lack of technologies 
that enable quick and reliable electronic 
data transfer (such as the Fast and Secure 
Protocol (FASP))17, limited computing 
resources (for example, the need for 
extremely powerful computers) and a lack  
of experts in the field of machine learning,  
as machine learning is a relatively new  
area in the medical field. Moreover, 
compared with other diseases (for example, 
cancer and cardiovascular disease), the  

big and complete OA databases  
have become available only in the  
past decade.

Variables in prediction models
Generally, prediction models are developed 
using input variables (such as baseline 
demographic and clinical data) and outcome 
(or response) variables (such as the presence 
of knee OA) as assessed by specific methods 
(for example, Kellgren–Lawrence (KL) grade 
for classification of knee OA). The resulting 
model is then used to predict the outcome 
variables of new data sets (such as patient 
data). In machine learning, this type of 
approach is known as supervised learning, as 
opposed to unsupervised learning, for which 
only input variables are used to model the 
data without any corresponding outcome 
variables (unlabelled data). In addition 
to supervised and unsupervised learning, 
there is also semi-​supervised learning, in 
which a small proportion of the data have 
corresponding outcome variables. Choosing 
which variables to consider when developing 
a prediction model is of great importance 

and can affect how the model performs in 
longitudinal studies.

Input variables. Knowledge of risk 
factors can assist in the early detection 
of knee OA, and these factors are often 
used as input variables for prediction 
models (Table 1). The risk factors for knee 
OA can be categorized into six different 
classes: demographic data, anthropometric 
features, medical history, biomarkers, 
imaging assessments and outcomes. 
During the past two decades, a number of 
risk factors for the development of knee 
OA have been identified and confirmed 
(Box 2). The risk factors most commonly 
incorporated into prediction models 
include age, sex and BMI. In addition, some 
other factors (such as family history18,19, 
ethnicity19,20, physical activity18,21,22, knee 
injury18,19 and occupational risk18,19) have 
also been considered in different studies. 
Moreover, a number of models have 
incorporated miscellaneous risk factors 
such as soluble vascular cell adhesion 
protein 1 (VCAM1) expression23,24 and 
occupational exposure19.

One of the main limitations of current 
models is that mostly conventional risk 
factors have been included. In order to 
enhance the predictive accuracy, several 
other variables and risk factors should 
be added. These variables include but 
are not limited to quadriceps strength, 
oestrogen deficiency, pharmacological 
treatments, genetic factors, varus or valgus 
malalignment, genetic predisposition, index-​
to-ring-​finger ratio, yearly income, nutrition, 
serum biomarkers, MRI markers and other 
imaging data (such as radiography and 
ultrasonography data). Identifying the best 
variables for predicting knee OA outcome 
is of importance for distinguishing between 
patients with slow-​onset knee OA and 
those with rapidly progressive knee OA. By 
identifying the most important variables, 
cost-​effective treatments can be carried out 
on high-​risk patients. In addition, knowing 
which variables are important to include 
in prediction models should reduce the 
number of variables required to measure or 
assess for each patient, saving considerable 
time and cost.

Outcome variables. The OA prediction 
models developed to date included ten 
different outcomes (Table 1). Of these 
outcomes, KL grade ≥ 2 and the presence of 
knee OA (including radiographic knee OA), 
alone or with other outcomes, were most 
commonly used. However, future prediction 
studies might elect to use variables that 
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Box 1 | Big data analysis

In health care, artificial intelligence approaches use algorithms and software to approximate 
human cognition in the analysis of complex medical data. It is now possible to comprehensively 
apply these approaches to develop osteoarthritis (OA) prediction models that can learn from very 
large amounts of data. Generally, artificial intelligence approaches outperform conventional 
statistical approaches on risk prediction tasks owing to their capability and efficiency in finding 
patterns in data that contain noisy variables and missing and imbalanced data16. The use of data 
mining and machine-​learning techniques could lead to the creation of optimized models for 
real-time decision-​making.

Data mining
Data mining refers to an analytical process designed to search a database for consistent patterns 
and/or systematic relationships between variables, and its ultimate goal is to discover hidden 
patterns, subtle trends and associations among variables. Interestingly, this approach does not 
require pre-​specification of the outcomes of interest but could identify several important 
associations. For OA, an immense amount of information is contained but hidden in databases, 
including information that is potentially important but has not yet been articulated because of the 
lack of the proper technologies to analyse all the information together.

Machine learning
Machine learning is a method of data analysis. This tool is closely related to computational 
statistics and automates analytical model building. Machine learning enables computers to find 
hidden insights without being explicitly programmed using algorithms that iteratively learn 
from the data. The training step of machine learning involves providing a machine-​learning 
algorithm with a training data set (that, for supervised methods, includes input and outcome 
variables) to learn from. The learning algorithm finds patterns in the training data set such that 
the input parameters correspond to the target. The developed model is then used to perform 
predictions on new data for which the outcome value is not known (for example, to assign a class 
to a new observation). The accuracy of data mining and machine-​learning methods varies 
depending on the selected variables and the similarity in size between the training and testing 
data sets.

Machine-​learning algorithms include but are not limited to supervised algorithms such as 
classification and regression algorithms (known as classifiers and regressors, respectively) (Table 2) 
and unsupervised algorithms such as clustering and dimensionality reduction algorithms.  
Some of the most commonly applied algorithms are support vector machines, k-​nearest 
neighbours, artificial neural networks, decision trees, ensemble methods (such as random  
decision forests), naive Bayes, clustering and principal component analysis.



are visible on MRI (such as cartilage loss, 
meniscal lesions, bone marrow lesions 
and bone curvature) as outcome variables, 
as these variables have been strongly 
associated with progression of OA in 
clinical trials25–31. It should be mentioned 
that the definition of the outcome variable 
could relate to the current disease status 
(cross-​sectional), incidence (for example, 
if in a given time frame the disease status 
changes from KL grade 0 to KL grade 2 as 
assessed by radiography, or from healthy 
cartilage to cartilage degradation as assessed 
by MRI) or progression (for example, a 
0.3 mm per year decrease of joint space 
width as assessed by radiography or a high 
level of cartilage degradation as assessed by 
MRI). Hence, the outcome variable might 
require data from multiple time points to 
define. When the outcome variable relates 
to the incidence or progression of disease, 
the input data are selected at baseline 
and the outcome variable is selected from 
the next time series.

Big data analysis. As with other diseases, 
the number of parameters included 
in OA databanks is expanding. With 
such large amounts of data, the ability 
to extract useful hidden information 
is becoming increasingly important. 
In past OA prediction models, various 
databases (Supplementary Table 1) were 
employed as the data source during model 
development, the most commonly used 
being the Osteoarthritis Initiative (OAI). 
As mentioned by Watt et al.20, the ability 
of these models to predict disease onset 
and progression is limited as the variables 
contributing to OA are both numerous at 
different time points (follow-​up data or time 
series data) and multifaceted. Furthermore, 
these models are not well suited to 
processing the noisy high-​dimensional 
data that are typical of knee OA data sets 
(for example, MRI data) and new advanced 
methods are crucially needed. Massive 
sample sizes and high dimensionality 
introduce challenges such as overfitting, 

heterogeneity, noise accumulation, spurious 
correlation and incidental endogeneity, 
which make traditional statistical methods 
inappropriate and unreliable in model 
development32. In order to achieve precise 
early diagnosis and prognosis, advanced 
machine-​learning and deep-​learning 
approaches are needed to quickly and 
automatically develop models that can 
analyse big and complex data and deliver fast 
and accurate results.

Feature selection. For large and complex 
data sets, decreasing the number of 
variables can increase the interpretability 
of a prediction model. In machine learning 
and statistics, feature selection (also known 
as variable selection, attribute selection 
or variable subset selection) is the process 
of selecting a subset of relevant variables 
(dependent and independent variables) for 
use in prediction model construction. The 
most important variables are chosen with 
respect to a given outcome. The selected 
variables have a vital role in the learning step 
and for determining the performance of the 
decision-​making step of the model; hence, 
the variables have to be chosen carefully.

Pre-processing data
The size and quality of the data set, the 
quality of the selected variables (especially in 
image analysis) and the choice of outcome(s) 
have notable effects on the effectiveness of 
machine-​learning-based approaches. Various 
types of pre-​processing can be performed on 
the data to improve the performance of the 
developed prediction models.

Class imbalance. The ultimate goal 
of a prediction model is to assign either 
a category (known as a class; such as a 
diagnosis, disease classification or risk 
group) or a continuous value (such as a 
risk value) to each item in a collection 
(for example, the individuals in a data set);  
these models are known as classification models 
and regression models, respectively.

Class imbalance refers to a data set in 
which one or more of the classes occurs 
more frequently than the others. In such a 
data set, the most common class is called 
the majority class, whereas the rarest class is 
called the minority class33.

Health-​care data sets are often imbalanced 
(for example, in the general population, many 
more individuals are likely to be healthy 
than have a risk of OA); this imbalance can 
result in erroneous prediction (heavily biased 
towards the majority class). Sampling-​based 
approaches can be used for rebalancing the 
data33–37. These approaches can be categorized 
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Data pre-
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• Leave-one-out
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Deployed
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Predicted
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Common feature
selection algorithms
• Lasso
• Elastic net
• Random forests
• Gradient boosting
• Support vector machine
   recursive feature elimination
• ReliefF
• Correlation-based
   feature selection

Common learning algorithms 
• Support vector machines 
• k-nearest neighbor 
• Artificial neural network
• Decision trees
• Ensemble methods
• Logistic regression
• Naive Bayes
• Random forests
• Gradient boosting
• Deep-learning methods

Fig. 1 | A generic scheme for clinical prediction modelling. Prediction models can be developed 
using conventional statistical approaches (such as Bayesian belief network). Machine-​learning algo-
rithms can also be applied at various stages when developing a prediction model. For both approaches, 
a training data set (such as raw data from a data set of patients with knee osteoarthritis) is used to build 
the model. The data are first pre-​processed, which can involve data cleansing, data imputation (to 
account for missing data), dimensionality reduction and the rebalancing and harmonization of the 
data. Feature selection approaches can be used to select the best variables, which can involve the use 
of machine-​learning algorithms such as Lasso, elastic net and random forest approaches. A training 
step can be incorporated into the model, such that the model learns from the data to find patterns and 
match the processed input data with the outcome variables. Machine-​learning algorithms commonly 
used for this step include support vector machines, k-​nearest neighbours, artificial neural network , 
decision trees and ensemble methods. The model can be internally validated or externally validated. 
The resulting prediction model is then used to predict the outcome (such as the risk , disease 
classification or diagnosis) of new input data (such as a new patient).
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Table 1 | Common risk factors incorporated into current models

Study Input variables Outcome 
variable(s)Age Sex Family 

history
Ethnicity Physical 

activity
BMI Knee 

injury
Occupational 
risk

Miscellaneous factors

Watt et al.20 x x – x – x – – 20 medical history 
variables, 9 physical 
exam variables, 
markers (including 
knee replacement, JSN, 
baseline symptoms and 
osteophyte score) and  
7 joint variables

• Knee OA
• WOMAC score
• JSN
• Knee pain
• Osteophyte score
• OA
• Baseline symptoms

Schett et al.23 x x – – – x – – Soluble VCAM1 Incidence of knee 
or hip replacement 
surgery for severe 
OA

Schett et al.24 x x – – – x – – Soluble VCAM1 Incidence of knee 
or hip replacement 
surgery for severe 
OA

Takahashi 
et al.66

x x – – – x – – Risk alleles of three 
susceptibility genes 
(ASPN, GDF5 and 
DVWA (also known as 
COL6A4P1))

Knee OA

Zhang et al.18 x x x – x x x x None • Incidence of 
radiographic knee 
OA (KL grade ≥ 2)

• Incidence of 
symptomatic knee 
OA (KL grade ≥ 2 
plus knee pain)

• Progression of knee 
OA ( ≥ 1 KL grade 
increase from 
baseline)

Kinds et al.68 x x – – – x – – ESR , pain intensity , 
WOMAC pain, WOMAC 
function, KL grade and 
quantitative radiographic 
variables

• Radiographic OA: 
KL grade ≥ 2

• Clinical OA: 
WOMAC pain 
score

• Clinical OA: 
WOMAC function 
score

• Clinical OA: knee 
pain

Kerkhof 
et al.67

x x – – – x – – Knee pain, disability 
index, general health, 
smoking, educational 
level, heavy work , genetic 
score, hand OA , hip OA 
and KL grade

• OA group: KL 
grade ≥ 2

• Non-​OA group: KL 
grade < 2

Losina et al.19 x x x x – x x x Occupational exposure Individual risk of 
knee OA and total 
knee replacement

Yoo et al.21 x x – – x x – – Educational status 
(graduated from college), 
hypertension and knee 
pain

• Radiographic knee 
OA

• KL grade 2
• KL grade 3
• KL grade 4
• Symptomatic knee 

OA

Long et al.71 x x – – – x x – Biomechanical gait 
parameters

Gait abnormalities 
characteristic of 
knee OA in injured 
populations

Swan et al.69 – – – – – – – – Proteomic and 
transcriptomic data

NA



into three categories: undersampling 
approaches (in which the minority class data 
are replicated), oversampling approaches 
(in which some of the majority class data are 
removed) and hybrid approaches (a mixture 
of undersampling and oversampling)33. 
In health care, resampling-​based ensemble 
methods (for example, random forests)38 
are also widely employed for imbalanced 
data. Ensemble methods create multiple 
classification models and combine them  
to produce more accurate results than a 
single model.

Missing data. Missing data occur when 
some of the values in a data set are not stored 
or are invalid. Missing data are a common 
issue and important to consider as their 
occurrence can affect the predicted outcome. 
Imputation methods such as multiple 
imputation (for example, multivariate 
imputation by chained equations (MICE) 
in the R package)39 and imputation using 
machine-​learning algorithms such as 
k-​nearest neighbour (k-​NN) algorithms, 
support vector machines (SVMs) and 
regression methods (such as sequential 
regression multiple imputation (SRMI) 

or stochastic regression) are among the 
best solutions for handling missing data. 
In addition, a variety of software such as 
SPSS40, SAS (MI procedure)41, STATA42 
and WEKA43 include imputation methods 
to tackle this problem. However, the right 
method to use is still controversial and is an 
area of active research44.

Data cleansing. Data cleansing involves 
detecting and correcting (or removing) 
incorrect, inaccurate or inconsistent parts 
of the data in order to improve the data 
quality. This process provides a clean, 
uniform and consistent data set to enable 
data harmonization. Several data cleansing 
tools are available, such as OpenRefine 
(open source)45, Wrangler Pro (Trifacta)46, 
the Paxata adaptive information platform 
(Paxata)47, the data cleansing tool from 
Alteryx48, Pandas (an open-​source Python 
data analysis library)49 and Dplyr (an 
open-​source R package)50. Currently, 
the fastest open-​source tool that enables 
data cleansing in a distributed and 
robust manner is the software Optimus51. 
This tool is very easy to install, use and 
understand.

Data harmonization. Data harmonization 
is the process of combining data from 
different sources and file formats, both of 
which are rarely uniform; for example, data 
sets can have different naming conventions 
or different numbers of variables52. This 
process can be difficult and should strike 
a good balance between practicality 
(harmonizing information that is similar and 
works together) and purity (harmonizing 
information that corresponds exactly). The 
harmonization process involves a number 
of steps including collecting the data from 
eligible sources (if eligibility criteria exist 
for inclusion in the harmonized data set); 
assessing whether the data and sources 
are suitable for harmonization; processing 
the source-​specific data into a common 
(harmonized) format (for example, using 
open-​source software such as Opal53, Mica53 
or DataSHIELD54); and analysing the 
harmonized data set55.

The above-​mentioned issues (missing 
data, imbalanced data, data cleansing 
and data harmonization) are often not 
considered in the field of knee OA predictive 
modelling and deserve further attention. 
Data harmonization methods are beyond 

Table 1 (cont.) | Common risk factors incorporated into current models
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Study Input variables Outcome 
variable(s)Age Sex Family 

history
Ethnicity Physical 

activity
BMI Knee 

injury
Occupational 
risk

Miscellaneous factors

Lazzarini 
et al.22

x – – – x x – – Imaging variables (active 
shape modes) extracted 
from radiographs, 
soluble biomarkers, 
pain questionnaires, 
food questionnaires and 
physical examinations

• Incidence of 
‘combined 
radiographic 
and clinical ACR 
criteria’

• Incidence of 
frequent knee pain

• Lateral JSN of 
1.0 mm

• Medial JSN of 
1.0 mm

• Incidence of KL 
grade 2

Ashinsky 
et al.70

– – – – – – – – Multislice T2-weighted 
knee images

• Baseline WOMAC 
score ≤ 10 with 
a baseline 
KL grade < 2 
(non-​progression)

• WOMAC 
score ≤ 10 with a 
KL grade < 2 and 
36-month change 
in WOMAC > 10 
(symptomatic 
progression of OA)

Minciullo 
et al.72

– – – – – – – – Shape, texture and 
appearance parameters 
extracted from lateral 
knee radiographic  
images

• Non-​OA: KL grade 
0 or 1

• OA group: KL grade 
2–4

ESR , erythrocyte sedimentation rate; JSN, joint space narrowing; KL , Kellgren–Lawrence; NA , not applicable; OA , osteoarthritis; VCAM1, vascular cell adhesion 
protein 1; WOMAC, Western Ontario and McMaster Universities Arthritis Index; x, input variable included; –, input variable not included.

http://www.datashield.ac.uk/


the scope of this Perspectives article but are 
discussed in detail elsewhere52,54,55.

Model evaluation
The performance of a model can be 
evaluated using data from the same source 
(internal validation) or an independent 
source (external validation).

Cross-​validation approaches24 are an 
accurate method of internal validation. 
The simplest form of cross validation (the 
holdout method) is one in which the data 
set is partitioned into a training data set 
(which is used for developing the model) 
and a test data set (which is used to assess 
the performance of the model). There is no 
optimum partition between the training 
and testing set, but researchers usually apply 
heuristic approaches, such as assigning 80% 
of the study population to the training set and 
20% to the testing set. However, this approach 
can bias the results and the findings might 
not be generalizable. N-​fold cross validation 
is an alternative approach; in this approach, 

the data set is partitioned into a number of 
equal-​sized partitions (n), multiple rounds of 
cross validation are performed (that is, each 
round uses a different partition as the testing 
set) and the average result is used to estimate 
the model’s performance.

External validation of a model can 
improve its generalizability and support 
the general applicability of a prediction 
model. In the literature, most researchers 
have applied calibration and discrimination 
measures56 as external validation methods57.

A major limitation of current prediction 
models, including those based on 
machine-​learning approaches, relates to 
the validation approach used, including 
the size of the populations considered 
for evaluating the performance of the 
algorithms. Hence, these models require 
further validation in order to be applicable 
in practice. To develop comprehensive 
prediction models that are useable in other 
similar populations, external validation 
(to assess generalizability) is needed57–60. 
So far, only one of the knee OA prediction 
models developed using machine-​learning 
approaches (Supplementary Table 1) has 
been externally validated with other data 
sets21. This model performed less well for 
the external data sets than for the internal 
data sets21, highlighting the importance of 
validation with other cohorts.

When developing a model, a variety of 
methods can also be used for increasing 
the generalizability of a model during 
external validation. For example, one 
proposed internal–external cross-​validation 
approach53,61 could be useful for models that 
use data from a large number of small trials. 
For this approach, a preliminary model is 
developed that excludes the data from one 
of the trials, and the data from the excluded 
trial are then used to validate the model. 
This process is then repeated for another 
preliminary model by excluding data from 
a different trial. Meta-​analysis is then 
performed on the summarized data of the 
different preliminary models (for example, 
to help identify sources of heterogeneity57, 
which in meta-​analysis refers to the variation 
in study outcomes between studies measured 
using statistical tests such as Cochran’s Q test 
and Higgins’s I2 test) before a final model  
is developed.

Researchers have also proposed a 
framework for quantifying how the 
populations used to develop and validate 
a model relate to each other (such as 
the distribution and variety of patient 
characteristics)62, which might enhance the 
interpretability of results from validation 
studies of developed prediction models.

The input and/or outcome variable 
definitions and the scoring systems used 
often vary in different populations, which 
limits the generalizability of developed 
clinical prediction models63. In order to 
overcome this shortcoming, one could verify 
whether extensions of the prediction models 
or modifications of data in external cohorts 
are possible for the developed prediction 
model. For example, the prediction model 
could be adjusted to take into account local 
and/or contemporary circumstances. A 
variety of approaches such as calibration-​
in-the-​large or re-​calibration methods 
could be applied for this issue. Strategies for 
upcoming clinical prediction models have 
been reviewed in more detail elsewhere63.

Lessons learnt from previous models
A wide range of prediction models have 
been developed for diseases other than 
OA using artificial intelligence tools 
that have had varying degrees of clinical 
implementation and utility15,16,64,65; however, 
a paucity of literature exists on models 
that estimate the risk of developing 
knee OA. The existing prediction models 
in OA can be divided into two categories: 
models developed using conventional 
statistical approaches18–20,23,24,66–68 and 
models developed using machine-​learning 
approaches21,22,69–72 (Supplementary Table 1). 
Although in the past decade, a number of 
prediction models for knee OA that use 
conventional scoring systems have been 
developed18–24,66–72, little progress has been 
achieved so far with respect to developing 
prediction models of knee OA using 
machine-​learning methods. Furthermore, 
only a few of the developed models deal 
with the prediction of knee OA in patients 
in the early stages of disease and other 
studies selected only variables (for use in 
prediction models) or developed models 
that were not designed for use in the general 
population (Table 1).

Conventional statistical approaches
One of the first developed knee OA 
prediction models was based on a Bayesian 
belief network (BBN)20, a graphical model 
that depicts the probabilistic relationships 
between variables (such as between 
diseases and symptoms). This model could 
consistently predict the presence of knee 
pain and knee OA in the study cohort. 
However, developing a BBN-​based model 
is extremely demanding and requires a 
high level of expertise, even if the network 
structure is already in place. BBN-​based 
models are also limited in their ability to 
analyse high-​dimensional data, and the 
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Box 2 | Risk factors in osteoarthritis

Demographics
•	Age

•	Sex

•	Education

•	Occupation

•	Yearly income category

•	Lifestyle

•	Living environment

•	Nutrition

•	Knee symptoms

•	Physical activity

•	Weight loss

•	History of knee injury and/or surgery

•	Family history (for example, of knee 
replacement)

Anthropometric features
•	BMI

•	Waist circumference

Medical history
•	Concomitant joint-​affected diseases

•	Knee pain

•	Knee stiffness

•	Pharmacological treatment

Biospecimens
•	Serum, plasma and/or urine biomarkers

•	Genetic data

Imaging
•	Radiographic data

•	Quantitative MRI structure assessments
Outcome

•	Knee and hip replacements



results of these models can be difficult to 
interpret. The use of fuzzy cognitive maps 
(FCMs)64,65,73, another graphical framework 
that represents the relationship between 
variables, is an alternative approach to using 
a BBN and is widely used in biomedicine. 
Evolutionary-​based FCMs can be applied to 
predict disease using multivariate time series 
data65 (which is not possible using a BBN) 
and can generate models from raw input 
data without any expert intervention.

Various other models relating to knee 
OA have since been developed, the results of 
which should inform the development 
of future models. For example, the level of 
soluble VCAM1 in severe OA is a predictor 
of joint replacement23; hence, two models 
have incorporated VCAM1 measurements 
for predicting the risk of joint replacement23. 
In one of the models, prediction was most 
accurate for patients who required bilateral 
joint replacement (that is, patients with the 
most severe form of OA) and was unaffected 
by the concomitance of other diseases 
(such as cardiovascular disease or other 
autoimmune diseases).

The purpose of most knee OA prediction 
models developed to date has been to 
predict the risk or presence of knee OA 
or knee OA progression. In one study, the 
incorporation of both genetic and clinical 
information improved the ability of a model 
to predict the presence of OA compared with 
the incorporation of genetic information 
alone66. Modifiable risk factors are often 
incorporated into prediction models. In 
the three prediction models developed 
by Zhang et al.18 (which were among the 
first models developed to predict the 
presence and progression of knee OA), 
the investigators demonstrated that by 
modifying certain risk factors (for example, 
obesity), the risk predicted by the models 
was reduced by a much greater extent than 
by modifying other factors.

As well as conventional risk factors, 
the addition of imaging variables has also 
been tested in various models. For example, 
Kinds et al.68 assessed whether and which 
separate quantitative variables on knee 
radiographs of individuals with recent-​onset 
knee pain are associated with the presence 
of radiographic OA and persistence and/or 
progression of clinical OA during a 5-year 
follow-​up. Incorporating measurements 
of osteophyte area and minimum joint 
space width to demographic and clinical 
characteristics improved the prediction 
of incident radiographic OA 5 years later. 
The evaluation of separate quantitative 
variables performed slightly better than KL 
grading in predicting clinical OA, whereas 

radiographic characteristics hardly added 
to the prediction of clinical OA. In another 
study, the addition of radiographic variables 
greatly improved the ability of a model67 to 
predict the presence of knee OA in an elderly 
population whereas the incorporation of 
easily obtainable questionnaire variables, 
genetic markers, OA at other joint sites 
and biochemical markers only modestly 
improved this model.

The development of online risk calculators 
might enable the public use of developed 
prediction models, and online risk calculators 
are already available for other diseases 
such as cancer, heart disease and diabetes. 
Losina et al.19 developed and assessed the 
feasibility of a computer-​based interactive 
risk calculator for knee OA (OA Risk C). 
However, this study had several major 
shortcomings (Supplementary Table 1). The 
average lifetime risk estimated by the study 
participants was 38%, whereas the average 
risk estimated by the OA Risk C was 25%.

Machine-​learning-based approaches
Incorporating machine-​learning algorithms. 
In the past 3 years, researchers have started 
applying artificial intelligence tools to 
predict early knee OA. The first model 
of knee OA to use machine-​learning 
techniques was developed by Yoo et al.21; 
in this study, the investigators developed 
and validated a self-​assessment scoring 
system and showed that the performance 
of this model improved considerably by 
incorporating an artificial neural network 
(ANN) (Table 2).

In 2017, Long et al.71 developed a 
prediction model for knee OA that used a 
k-​NN algorithm (Table 2). A combination 
of hip and knee kinetic variables (such as 
ground reaction force, maximum vertical 
loading rate, first peak rotation angle and 
maximum adduction moment) and the 
quality of life outcome score produced 
the strongest performing prediction model 
with the lowest error rate for predicting 
the risk of knee OA in injured individuals. 
In addition, the investigators found that 
individuals with lower limb injury and 
knee OA had lower Knee Injury and 
Osteoarthritis Outcome Scores (KOOSs) 
than asymptomatic individuals. As 
highlighted by the investigators, this finding 
gives credence to the idea that KOOSs 
related to peak knee adduction moment 
during gait, which is a valid proxy for 
medial joint loading, are a sensitive measure 
for predicting those at risk of developing 
poor knee function over time and could 
be used in a clinical setting. Additionally, 
these findings strengthen the idea that 

alternative diagnostic techniques might be 
effective, compared with using only self-​
reported questionnaires or clinical symptom 
assessment, and provide another option 
over costly MRI. Moreover, the findings 
of this study support previous evidence 
suggesting that worsening knee-​related 
quality of life and knee functionality are 
linked to peak knee adduction moment, 
particularly in individuals who have 
undergone knee surgery. The findings from 
both Long et al.71 and Yoo et al.21 suggest that 
the incorporation of a machine-​learning 
algorithm such as k-​NN or ANN could 
be a viable cost-​effective method if used 
in conjunction with biomechanical gait 
analysis for the diagnosis of early knee OA.

Finally, in another study, Minciullo 
et al.72 developed two OA-​related prediction 
models using decision trees (Table 2). In 
these two models, the use of a modified 
version of a random forest outperformed 
the use of a standard random forest. In a 
standard random forest, each tree in the 
forest contains binary decision nodes that 
decide whether a sample should be passed 
to one of two nodes (known as leaves). 
Minciullo et al.72 demonstrated that 
making this step less decisive (that is, 
introducing a soft decision at each node, 
where some samples might go to multiple 
leaves) can improve the performance of a 
prediction model.

Incorporating imaging-​based information. 
Similar to demographic and clinical 
data, the incorporation of imaging-​based 
information can improve machine-​learning-
based prediction models22. Some of the 
data used to develop prediction models, 
such as radiographic data, are not very 
sensitive (for example, changes in joint 
space measurements over time and the 
presence and size of osteophytes) or rely on 
patient assessments, which could be very 
subjective and dependent on the population 
and/or ethnicity (for example, pain). The 
incorporation of more objective quantitative 
metrics such as direct and quantitative 
measurements of imaging variables by MRI 
will improve the modelling procedure. Using 
MRI, numerous tissues of the joint can be 
quantitatively assessed for the classification 
of individuals74, as highlighted in the study 
by Lazzarini et al.22. The findings of this 
study suggest that imaging data could be 
used in primary care settings22.

In another study by Ashinsky et al.70, 
a machine-​learning algorithm (WND-​
CHRM) was used to select variables 
of articular cartilage visible by MRI 
(performed in vivo) that were indicative 
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Table 2 | Examples of supervised machine-​learning algorithms for disease prediction and/or classification models

Approach Type of 
supervised 
learning

Description Graphical depiction

Logistic regression Classification or 
regression

• Logistic regression is a conventional statistical 
technique that can be applied in machine learning. It 
is typically used for two-​class classification problems 
(that is, data for which the outcome variable is binary)

• The goal of this approach is to represent the 
relationship between a binary outcome variable (y) and 
one or more input variables (x) in an equation (which 
can also be graphically represented)

• In the equation, the input variables are combined with 
coefficients that weight each input variable (x), and a 
logistic function is used to transform the value into a 
probability between 0 and 1 (y). A threshold value is 
used to assign the binary outcome (0 or 1)

1

0

y

x

Threshold
value

Lasso regressiona Classification or 
regression

• Lasso regression is a type of regularized linear 
regression method. Regularized linear regression 
methods use a linear equation to represent the 
relationship between the outcome variable (y) and 
input variables (x) and impose a penalty to regularize 
the coefficients (to reduce the complexity of the 
model and strike a balance between underfitting and 
overfitting the data)

• In Lasso regression, this penalty is equal to the 
absolute value of the magnitude of coefficients. To 
reduce this penalty , Lasso regression tends to shrink a 
set of regression coefficients to zero. As variables with 
a coefficient of zero are effectively omitted from the 
model, this method can be used for feature selection 
(that is, any variables with non-​zero regression 
coefficients are selected)

y

Underfitting

y
x

Overfitting

Support vector 
machine

Classification • The goal of a support vector machine is to identify a 
hyperplane that best divides the data into the classes

• This hyperplane could be a line (for separating 2D 
data), a plane (for separating 3D data) or a hyperplane 
(for separating 4D data)

• The support vector machine finds the coefficients that 
result in the best separation of the classes by trying to 
maximize the margin between the hyperplane and the 
closest points to the hyperplane

x

y

Margin

Hyperplane

Support
vectors

k-​NN Classification or 
regression

The k-​NN algorithm is a nonparametric method (that 
is, it makes no assumptions on the underlying data 
distribution). The algorithm is based on feature similarity 
(that is, how closely a new item resembles each item in 
the training set). The item is classified by a majority vote 
of its neighbours (that is, the new item is assigned to the 
class most common among its neighbours)

y

x

Nearest
neighbours

Artificial neural 
network

Classification An artificial neural network consists of units (neurons) 
arranged in layers, with the aim of converting an input 
vector into some output. The layers between the input 
and output layers are often hidden. Each unit takes 
an input, applies a (often nonlinear) function to it and 
passes it onto the next layer. Weights are applied to 
the signals passing from one unit to another, which are 
modified during the training phase

Input
layer

Hidden
layer

Output
layer



of OA progression, which were then used 
to develop a disease classification model; 
the selected variables correlated with the 
Western Ontario and McMaster Universities 
Arthritis Index (WOMAC) score, and the 
developed model had a 75% accuracy in 
predicting what patients would progress to 
having symptomatic OA. The model had 
several limitations (Supplementary Table 1), 
and the investigators concluded that future 
versions of the model should incorporate 
additional cartilage slices in the MRI analysis 
and combine T2 maps with additional MRI 
contrast modalities.

Selecting the best variables. Gathered data 
from numerous variables of knee OA such 
as patient history, biomarkers and image 
assessments and, more importantly, the 
complex interactions between the different 

variables, are needed to achieve accurate risk 
prediction and early detection. However, 
selecting what variables to incorporate into 
prediction models can be a complex task 
owing to the great number of variables (both 
relevant and irrelevant) to choose from.

To address this issue, Swan et al.69 
proposed a heuristic method for feature 
selection called ranked guided iterative 
feature elimination (RGIFE) to identify 
biomarkers of OA, articular cartilage 
degradation and joint inflammation. RGIFE 
is an iterative machine-​learning-based 
feature elimination approach in which (in 
each iteration) the variables are ranked on 
the basis of their importance in the model 
and blocks of attributes are removed. This 
dynamic approach differs from other 
proposed methods for feature selection that 
use a static (fixed) approach. The authors 

obtained 100% classification accuracy by 
combining the RGIFE feature selection and 
BioHEL (a rule-​based machine-​learning 
method for classifying samples). Swan et al.69 
identified biologically relevant proteins 
using this feature selection method. This 
algorithm was used in a later study by 
Lazzarini et al.22 to identify biomarkers for 
use in various models of knee OA. Although 
no new biomarkers were identified in 
this later study (owing to a lack in overlap 
between biomarkers identified for each 
model), their findings suggest that the 
evaluation of body fluids of structural 
degradation products from the extracellular 
matrix might provide valuable information 
on the development and prediction of OA.

In these two studies, the researchers 
used data sets with high numbers of 
parameters, including proteomics and 

Table 2 (cont.) | Examples of supervised machine-learning algorithms for disease prediction and/or classification models
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Approach Type of 
supervised 
learning

Description Graphical depiction

Decision tree Classification A decision tree builds a model in the form of a tree-​like 
structure to describe the data, where the root (the 
starting node; representing the input data) connects to 
leaves (the terminal nodes; representing the class labels) 
via branches that divide at internal nodes. Each internal 
node performs a test on the data to decide which 
branch to move onto

Root

Internal
nodes

Leaves

Branches

Naive Bayes Classification • Naive Bayes is a classification technique that predicts 
a class value given a set of variables on the basis of 
applying Bayes’s theorem with the assumption of 
independence between the variables

• In simple terms, the probability of each class for 
different input values for each variable is calculated 
during training. For new sets of data, all the variables 
contribute independently to predicting the probability 
of the class

Random foresta Classification or 
regression

Random forest builds multiple decision trees and 
merges them together to get a more accurate 
prediction. The output is the mode of the predicted 
class (classification) or the mean of the predicted class 
(regression) of the individual trees

k-​NN, k-​nearest neighbours. aCan be used for feature selection.



transcriptomic data with thousands of 
parameters69, and the PROOF data set22. 
However, although the study by Lazzarini 
et al.22 using the PROOF data set was 
comprehensive, only 186 variables and 
365 individuals were included. Additional 
comprehensive prediction models for early 
knee OA should be developed, inspired by 
this study22, and should include complete 
clinical data in addition to income, 
educational status and quantitative MRI 
structure assessment variables. Furthermore, 
future models should also contain much 
larger numbers of individuals and consider 
linear and nonlinear interactions between 
variables. By creating a visual map of the 
selected variables and performing advanced 
analysis and modelling, the relationship 
among selected variables can be identified. 
Swan et al.69 applied the cytoscape75 software 
platform to visualize and analyse their data 
sets, but the FCM method could also be 
applied for this task. Lastly, more advanced 
machine-​learning algorithms are needed 
to develop a prediction model for such a 
complex disease as OA.

The identification of new biomarkers and 
further validation of existing biomarkers 
have the potential to facilitate DMOAD 
development and improve treatments. 
Methods for feature selection will probably 
become increasingly useful in the field of 
rheumatology as the use of large ‘omics’ 
data sets increases. Swan et al.69 showed 
that the RGIFE method in combination with 
the BioHEL rule-​based machine-​learning 
method is more suitable for the analysis of 
transcriptomic and proteomic OA data than 
five other machine-​learning-based methods 
(that is, correlating-​based feature selection, 
SVM-​recursive feature elimination, 
random forest feature selection, naive Bayes 
feature selection and χ2 feature selection). 
At present, regularized linear regression 
machine-​learning algorithms such as least 
absolute shrinkage and selection operator 
(Lasso) and elastic net76–80 (Table 2) are 
among the most effective and efficient 
solutions for feature selection. However, 
deep-​learning-based feature selection is also 
becoming increasingly used81–83.

Unlike linear models, deep-​learning- 
based models can take into account the 
nonlinearity of features and can be used 
in situations that involve more than two 
classes (such as multiclass classification 
as opposed to binary classification)83. For 
example, in one study81 a feedforward-​
network-based deep-​learning approach 
enabled the accurate selection of features 
that could best predict the oestrogen 
receptor status of patients with breast cancer 

using metabolomics data. Among six other 
machine-​learning methods (recursive 
partitioning and regression trees, linear 
discriminant analysis, SVM, deep learning, 
random forest, generalized boosted models 
and prediction analysis for microarrays), 
the deep-​learning approach had the highest 
accuracy in classifying patients as oestrogen 
receptor positive or negative based on its 
selected features. Furthermore, another deep 
feature selection approach, called SAFS, 
could outperform other feature selection 
methods (such as Lasso and random 
forest methods) in the evaluation and 
prioritization of risk factors for hypertension 
in a high-​risk demographic subgroup 
(African-​American patients)82. Hence, deep-​
learning-based feature selection is an area of 
active research.

In addition to the above methods, new 
feature selection methods that are able to 
handle multivariate time series data sets 
such as the Python package tsfresh84 or 
software package hctsa85 could increase the 
prediction accuracy and interpretability  
of prediction models.

Encouraging interdisciplinary research 
collaborations. Experts in the field of knee 
OA could benefit from looking at other 
fields that have already switched from 
using conventional methods for disease 
classification or prediction to using more 
advanced methods such as models that 
incorporate machine learning64,65,73. To 
move towards personalized medicine, 
interdisciplinary research teams are 
necessary; OA researchers could benefit 

Glossary

Artificial intelligence
The process of creating systems that can learn from 
experience and adjust to new inputs in order to perform 
human-like tasks. Machine-learning is a fundamental 
concept of artificial intelligence.

Calibration
Calibration measurements represent the level of accuracy 
of a model in estimating the absolute risk (that is, the 
agreement between the observed and predicted risk). 
Poorly calibrated models will underestimate or 
overestimate the outcome of interest.

Classification models
In statistics and machine-learning, classification is the 
process of identifying the category of a new observation 
on the basis of a training set of data containing 
observations for which the category (outcome value) is 
known. In the field of osteoarthritis, an example could be 
classification of patients into slow progressors and fast 
progressors on the basis of several input variables.

Deep-learning
A subfield of machine-learning that is based on advanced 
artificial neural networks; this field has enabled doctors in 
different fields of medicine to obtain a precise 3D 
understanding of 2D images.

Discrimination
Discrimination measurements identify to what extent a 
model discriminates items of different classes (for 
example, individuals with disease and without disease). 
For binary outcomes, the receiver operating characteristic 
curve or C-statistic could be applied for discrimination 
measurement.

Feature selection
Feature selection refers to the process of obtaining a 
subset of variables from an original set of variables 
according to certain feature selection criteria. The feature 
selection step precedes the learning step of a prediction 
model and good feature selection results can improve the 
learning accuracy, reduce learning time and simplify 
learning results.

Generalizability
Refers to the accuracy with which a prediction model 
developed from one study population can be used for the 
population at large.

Imputation
In machine-learning and statistics, imputation is the 
process of replacing missing data with substituted values 
to avoid bias or inaccuracies in the results.

Interpretability
Model interpretability describes the ability of the user to 
understand the model, which includes understanding the 
relationships between the input and outcome variables 
(for example, knowing how the selected input variables 
contribute to the outcome variable).

Regression models
Regression is the process of identifying the value of a new 
observation on the basis of a training set of data 
containing observations for which the category (outcome 
value) is known. In the field of osteoarthritis, an example 
could be predicting the probability of disease.

Semi-supervised learning
Semi-supervised learning is typically when only a small 
amount of data are labelled (that is, have both input and 
output variables) and a large amount are unlabelled (that 
is, have only input data); this method falls between 
unsupervised learning and supervised learning.

Supervised learning
Supervised learning is where you have input variables (x) 
and an output variable (y) and use an algorithm to  
learn the mapping function from the input to the  
output y = f(x).

Training
The training for machine learning involves providing  
a machine-learning algorithm with training data (input 
and outcome variables) to learn from. The learning 
algorithm finds patterns in the training data such that 
the input parameters correspond to the target. 
Machine-learning models are applied to do predictions 
on new data for which the outcome value is not known 
(for example, to determine to which class the new 
observation belongs).

Unsupervised learning
In unsupervised learning, only input data (x) exist and 
there are no corresponding output variables. The goal for 
unsupervised learning is to model the underlying 
structure or distribution in the data in order to learn more 
about the data.
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from collaborating with others in the field 
of computer and data science with expertise, 
for example, in data mining, machine 
learning and image processing. In addition, 
research funding agencies, universities 
and governments are encouraged to 
connect researchers from diverse scientific 
backgrounds (including bioinformatics, 
biomathematics and biostatistics) on 
topics related to OA and personalized 
medicine. For example, a large European 
interdisciplinary research team completed 
the D-​BOARD project in 2017. In this 5-year 
project, European researchers identified 
novel diagnostics, genes and biomarkers 
(by analysing proteomic, metabolomic, 
genomic and transcriptomic profiles) that 
could help diagnose OA at an early stage. In 
the ongoing APPROACH project, another 
European interdisciplinary team is working 
together to combine biomedical data from 
more than 10,000 individuals with and 
without OA into a unified bioinformatics 
platform with the aim of identifying 
different OA phenotypes.

Conclusions
Early diagnosis of knee OA and the ability 
to track disease progression is challenging. 
Progress is needed to help knee OA 
physicians and scientists make decisions on 
the basis of massive data sets within a short 
time. Accurate predictive modelling for OA 
progression might be difficult to achieve 
without sensitive imaging techniques 
that can detect early changes before 
morphological alterations are detectable. In 
addition to the quantitative MRI assessment 
of articular tissues, compositional MRI 
techniques for cartilage (for example, T2 
and T1ρ relaxometry) could in principle 
uncover such early changes in this tissue. 
However, these techniques have limitations 
that need to be overcome before they 
can be commonly used; for example, 
these techniques are sensitive to regional 
variation in the tissue, T2 is prone to an 
artefact named magic angle effect (which 
is a potential source of diagnostic error) 
and T1ρ could be difficult to implement 
in the clinical setting as this technique 
requires dedicated hardware and software. 
Moreover, alterations in the cartilage might 
not be the earliest changes that occur in  
OA, and bone curvature changes assessed 
by quantitative MRI seem to precede 
cartilage loss30,31.

Efficient and reliable screening of 
patients with early OA and patients who 
will progress rapidly using prediction 
models is important, not only from a 
medical and patient standpoint but also 

for the pharmaceutical industry, scientific 
community and society in general. Such 
screening could be used as a tool to guide 
clinical decision-​making, representing a 
major advance towards attaining precision 
medicine, which in turn will also help to 
distinguish the responders from the non-​
responders of a given therapy. For the 
scientific community, effective prediction 
models should boost research into drugs and 
drug targets and the design and development 
of effective and specific personalized 
therapeutic interventions for these patients. 
The models should also enable substantial 
savings in medical resources and societal 
costs by reducing patient morbidity and 
improving the quality of life of patients. 
Moreover, research in other complex, 
slow and unpredictable diseases could 
benefit from fine-​tuning such developed 
prediction models.

In developing prediction models, 
interdisciplinary research teams are 
needed. Furthermore, to increase the 
prediction accuracy and interpretability of 
OA knee prediction models, data mining 
approaches should include advanced 
machine-​learning algorithms, multivariate 
time series data sets, nonlinear feature 
selection methods and other imaging 
variables such as MRI.
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