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s u m m a r y

Objective: Conventional methodologies are ineffective in predicting the rapid progression of knee os
teoarthritis (OA). MicroRNAs (miRNAs) show promise as biomarkers for patient stratification. We aimed to 
develop a miRNA prognosis model for identifying knee OA structural progressors/non-progressors using 
integrated machine/deep learning tools.
Methods: Baseline serum miRNAs from Osteoarthritis Initiative (OAI) participants were isolated and se
quenced. Participants were categorized based on their likelihood of knee structural progression/non-pro
gression using magnetic resonance imaging and X-ray data. For prediction model development, 152 OAI 
participants (91 progressors, 61 non-progressors) were used. MiRNA features were reduced through 
VarClusHi clustering. Key miRNAs and OA determinants (age, sex, body mass index, race) were identified 
using seven machine learning tools. The final prediction model was developed using advanced machine/ 
deep learning techniques. Model performance was assessed with area under the curve (AUC) (95% con
fidence intervals) and accuracy. Monte Carlo cross-validation ensured robustness. Model validation used 30 
OAI baseline plasma samples from an independent set of participants (14 progressors, 16 non-progressors).
Results: Feature clustering selected 107 miRNAs. Elastic Net was chosen for feature selection. An optimized 
prediction model based on an Artificial Neural Network comprising age and four miRNAs (hsa-miR-556-3p, 
hsa-miR-3157-5p, hsa-miR-200a-5p, hsa-miR-141-3p) exhibited excellent performance (AUC, 0.94 [0.89, 
0.97]; accuracy, 0.84 [0.77, 0.89]). Model validation performance (AUC, 0.81 [0.63, 0.92]; accuracy, 0.83 
[0.66, 0.93]) demonstrated the potential for generalization.
Conclusion: This study introduces a novel miRNA prognosis model for knee OA patients at risk of structural 
progression. It requires five baseline features, demonstrates excellent performance, is validated with an 
independent set, and holds promise for future personalized therapeutic monitoring.
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Introduction

Knee osteoarthritis (OA) is the most disabling musculoskeletal 
condition, constituting a leading cause of long-term work incapacity 
and frequent visits to primary care doctors. Existing treatments for OA 
primarily alleviate symptoms without addressing structural changes 
in the joint. Therefore, preventing development or attenuating pro
gression in early OA is a priority for developing new interventions. 
Unfortunately, conventional methodologies are ineffective in prog
nosticating patients whose disease will progress rapidly.

The challenges faced in discovering reliable biomarkers for early 
prediction of knee OA structural progression include the hetero
geneity of disease development and the lack of methodologies en
abling accurate classification of OA patients. As such, finding 
minimally invasive biomarkers to classify OA patients into sub
groups centered on structural progression phenotypes is expected to 
support disease management. In addition, biomarkers are antici
pated to support the development of OA therapeutics in the form of 
disease-modifying OA drugs (DMOADs), as one hurdle in clinical trial 
recruitment is the early detection of participants at risk for rapid 
structural progression of the disease.

Previous biomarker studies have typically defined knee OA pro
gression based on radiography and/or symptoms. However, radio
graphy alone is not sensitive to early knee structure alterations and 
their changes over time.1 Additionally, OA symptoms lack a direct 
correlation with structural disease progression.2 In contrast, mag
netic resonance imaging (MRI) is very sensitive and effective at de
tecting early knee structural changes and tracking their progression 
over time, often identifying alterations before they appear with 
other imaging modalities.3 Demonstrating this, an algorithm devel
oped by our group showed that five features as inputs, three from 
MRI and two from radiography, could accurately predict knee OA 
progressors.4 However, since MRI is not widely used in clinical set
tings for knee OA and this methodology could be costly, there re
mains a need for minimally invasive and cost-effective biochemical 
markers for knee OA progression. Therefore, circulating biochemical 
markers offer a suitable option.

Representing a promising new class of circulating biomarkers, 
microRNAs (miRNAs) are small non-coding RNA segments (∼22 
nucleotides) that are relatively stable and specific to various disease 
states.5 In the context of OA, miRNAs have been shown to regulate 
joint tissue development, homeostasis, inflammation, cartilage de
generation, autophagy, and apoptosis, among other processes.6,7

While several studies have explored circulating miRNAs as po
tential biomarkers of OA,8 only a handful of studies used sequencing, 
which is the current gold-standard approach for miRNA profiling. Of 
those studies, only one focused on OA progression, identifying four 
members of the miR-320 family linked to rapid progression of 
radiographic knee OA.9 However, in this previous study, the char
acterization of the fast-progressing phenotype was based on radio
graphy only, which, as noted above, is less sensitive than MRI for 
early prognosis. To fill this gap, the main objective of the present 
study was to identify a miRNA signature that predicts, at an early 
stage, individuals at risk of structurally progressive knee OA. We 
hypothesized that a prediction model with excellent performance 
could be developed and validated by defining structural progressors 
using both MRI and radiography4 and applying machine and/or deep 
learning approaches to miRNA-sequencing data.

Methods

Study population

All participants were from the Osteoarthritis Initiative (OAI) co
hort.10 The training and testing cohorts used to develop the model 

comprised 152 baseline serum samples from the Incidence and 
Progression OAI subcohorts.

For the model validation, we used an independent set (compared 
to the modeling dataset) of 30 baseline plasma OAI samples obtained 
from an existing dataset from the OAI Gene Expression Omnibus 
database (GEO accession number GSE183188).9 The relative global 
miRNA expression patterns between plasma and serum have been 
previously shown to be correlated.11

More details about the OAI cohort are available at https://nda.nih. 
gov/oai.

Sample size

The post hoc sample size was determined using a method spe
cifically designed for studies involving the area under the receiver 
operating characteristic (AUROC) curve.12 It is particularly suitable 
for our study because our outcome is binary (progressor vs. non- 
progressor), and our predictors are continuous (miRNA features).

The calculations were performed as follows: 

• Calculate Q1 and Q2 using the formulae: Q1 = θ/(2-θ) = 0.9048; 
Q2 = 2θ²/(1+θ) = 0.9256;

• Calculate the standard normal deviate for α (Zα) = 1.9600;

• Calculate the Standard Error goal (SE goal) = W/2Zα = 0.031888;

• Calculate a = P(1-P)(SE goal)² = 0.000244;

• Calculate b = -(P(Q1-Q2) + Q2 - θ²) = −0.0106;

• Calculate c = Q1 + Q2 - θ - θ² = −0.0221.

The values in the formulae were derived as follows: 

• θ (expected AUROC) was set to 0.95, based on prior estimates of 
model performance.

• P (proportion of the sample having the disease) was set to 0.6, 
reflecting the prevalence of the condition in our sample.

• W (width of the confidence interval) was chosen as 0.125, based 
on the desired precision.

• Confidence level (CI) was set at 95% for the calculations.

All the analyses were done using an online sample size calculator 
for designing clinical research (https://sample-size.net/sample-size- 
ci-for-auroc/). Q1 adjusts for the skewness of the ROC curve, while 
Q2 accounts for its overall shape, with θ representing the expected 
AUROC value.

MiRNA sequencing

Among high-throughput profiling techniques, miRNA sequencing 
is considered the gold-standard approach and offers unbiased 
quantification of miRNAs within a sample.13 We followed custo
mized methods for miRNA sequencing as previously described.14

Briefly, frozen aliquots of serum (n=152) samples collected at 
baseline were obtained from the OAI and stored at −80 °C until use. 
RNA was isolated from 200 µL using the miRNeasy Serum/Plasma 
Advanced kit (QIAGEN), and miRNA libraries were created using the 
QIAseq miRNA Library kit (QIAGEN). The quality of the libraries was 
evaluated with an Agilent TapeStation (D1000). Sequencing was 
performed on an Illumina MiSeq system utilizing a single-end 76- 
base read protocol.

As mentioned above, raw sequencing data for the independent 
validation plasma samples (n=30) were obtained from an existing 
GEO dataset. RNA isolation, miRNA library preparation and sequen
cing were performed using a similar pipeline to the one described 
above for serum samples.9
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Analysis of miRNA-sequencing data

We followed a customized miRNA-sequencing analysis pipeline 
optimized for miRNA biomarker discovery.15 Briefly, for serum and 
plasma samples, demultiplexing of.bcl files and conversion into Fastq 
files were performed to align the sequencing data and generate 
counts. Unique molecular identifiers were extracted, and reads were 
trimmed to select sequences between 18 and 30 bp. Two rounds of 
read alignment were carried out, first against mature miRNA se
quences from the miRBase v22.1 database, followed by a second 
round against the human reference genome (vGRCh38), and miRNA 
counts from each alignment round were combined. Low-count 
miRNAs were filtered out to include only those with at least ten 
counts per million in two or more samples. The average mapped reads 
per sample for the serum modeling cohort was 915,000 ± 400,000, 
and 456 miRNAs were selected following low-count filtering.

Since serum and plasma samples were sequenced separately, we 
compared miRNA levels across these sample types. Using paired 
serum and plasma samples from nine OAI participants, Pearson 
correlation analysis revealed a very good correlation (Supplementary 
Fig. S1), suggesting that miRNA levels are comparable across these 
two biofluids.

Workflow for prioritizing the features

We undertook a stepwise approach to prioritizing miRNAs from 
the sequencing data (Fig. 1). The first step included labeling the 152 
participants into progressors or non-progressors. Next, unsupervised 
dimensionality reduction was performed to identify the most in
formative miRNAs within the initial set of 456. This is an essential 
step, as high multicollinearity might lead machine learning to 
overfitting. Then, to identify the top miRNAs along with four OA risk 

Fig. 1                                                                                                         

Workflow of the methodology for prioritizing the most relevant microRNAs/risk factors to discriminate participants into OA structural pro
gressors/non-progressors. ANN, artificial neural network; ACC, accuracy; AUC [95% CI], area under the curve [95% confidence interval]; DL, 
deep learning; DT, Decision Tree; EN, Elastic Net; GBM, Gradient Boosting Machine; KSVM, Kernel Support Vector Machine; Lasso, Least 
Absolute Shrinkage and Selection Operator; ML, machine learning; miRNA, microRNA; OAI, Osteoarthritis Initiative; PLR, Penalized Logistic 
Regression; RF, Random Forest; RFE, Recursive Feature Elimination; Ridge Reg, Ridge Regression; SVM, Support Vector Machine; VarClusHi, a 
python package for feature clustering.
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factors – including age, sex, body mass index (BMI), and race – 
predictive of knee OA structural progression, we first identified the 
best machine-learning model among seven and then classified the 
features. The output was the labeling of participants as progressors/ 
non-progressors.4 The participants were then separated randomly 
into 80% for the training dataset and the remaining 20% for testing. 
Further, seven machine/deep learning models were assessed with 
training and test datasets to identify the most effective miRNAs and 
risk factors. For each model, hyperparameter tuning, oversampling, 
and fivefold cross-validation with five repetitions were carried out, 
and the performance was evaluated with several metrics such as 
area under the curve (AUC) [95% confidence interval (CI)] using the 
Agresti-Coull interval16 for the modeling cohort and the Wilson 
score interval17 for the validation cohort in all feature selection and 
prediction model analyses, along with accuracy, sensitivity, and 
specificity with their [95% CI] for all models. A two-step validation 
was conducted with the final model to confirm its generalizability: i) 
an internal validation performed with Monte Carlo cross-valida
tion18 with 100 simulations and ii) a reproducibility analysis with an 
additional OAI dataset (independent to the one used for model de
velopment) of 30 plasma samples.

Labeling structural progressors and non-progressors

To define the progressor/non-progressor outcome for our study, we 
applied a classification approach based on our previously published 
methodology4 also described in19 This method was chosen because in 
addition to X-rays, it uses MRI, a highly sensitive methodology enabling 

the detection of subtle and early knee structural changes. In brief, this 
approach utilized a developed machine learning model that comprised 
five baseline imaging features: three from MRI (mean cartilage thick
ness values from central, medial, and peripheral plateaus) and two 
from X-rays (joint space narrowing [JSN] and joint space width [JSW]. A 
threshold value that distinguishes structural progressors from non- 
progressors was subsequently applied.

In the modeling cohort, 91 participants were labeled structural 
progressors and 61 as non-progressors. The independent dataset 
used for validation comprised 14 structural progressors and 16 non- 
progressors. Table I displays the characteristics of the participants.

Dimensionality reduction

To disentangle the highly correlated miRNAs before downstream 
analyses, we used an unsupervised dimensionality reduction tech
nique that employed the hierarchical clustering variable approach, 
VarClusHi, implemented in Python.20 This methodology assessed 
collinearity and redundancy by organizing variables into clusters 
that could be aggregated into one variable, thus diminishing the 
number of variables.21 This method iteratively breaks down existing 
variable groups into subgroups until a stopping criterion is fulfilled, 
providing a straightforward approach for developing scales. Here, we 
used a cluster-splitting threshold of 0.70, then 0.60, and finally 0.40. 
Within each cluster, miRNAs were systematically removed based on 
the highest 1-R2 ratio, engaging in an iterative evaluation of 
Spearman correlations among the remaining miRNAs. After the third 

Modeling (serum, n=152) Validation (plasma, n=30)

Progressorsa

(n=91)
Non-progressors  
(n=61)

Means 
Difference 
[95%CI]

p-valueb Progressorsa

(n=14)
Non-progressors  
(n=16)

Means 
Difference 
[95%CI]

p-valueb

Age (years) 64.7 ± 9.1 57.7 ± 8.4 −7.1 [−9.9, −4.2] ≤0.001 59.8 ± 10.5 58.8 ± 8.2 −1.0 [−8.0, 6.0] 0.951
OAI cohort ≤0.001 0.675
Incidence, % (n) 0 (0) 14.8 (9) 71.4 (10) 81.3 (13)
Progression, % (n) 100 (91) 85.2 (52) 28.6 (4) 18.8 (3)
Race ≤0.001 0.209

1 Caucasian, % (n) 100 (91) 75.4 (46) 85.7 (12) 100 (16)
2 African American, 
% (n)

0 (0) 24.6 (15) 14.3 (2) 0 (0)

Gender, Male, % (n) 50.5 (46) 37.7 (23) 0.137 42.9 (6) 50.0 (8) 0.730
BMI (kg/m²) 30.0 ± 4.9 29.2 ± 4.7 −2.4 [−2.4, 0.8] 0.626 28.4 ± 4.7 26.7 ± 3.8 −1.7 [−4.8, 1.5] 0.580
WOMAC

Pain (score 0−20) 5.2 ± 3.2 3.9 ± 3.6 −1.3 [−2.4, −0.2] 0.008 2.1 ± 2.1 0.0 ± 0.0 −2.1 [−3.3, −0.8] 0.001
Function (0−68) 15.6 ± 9.7 11.2 ± 11.8 −4.4 [−7.8, −0.9] 0.003 5.4 ± 6.3 0.1 ± 0.3 −5.3 [−8.9, −1.7] 0.003
Stiffness (0−8) 2.6 ± 1.5 2.1 ± 1.6 −0.6 [−1.1, −0.04] 0.041 1.4 ± 1.3 0.1 ± 0.3 −1.4 [−2.1, −0.6] 0.001
Total (0−96) 23.4 ± 13.1 17.2 ± 15.9 −6.2 [−10.9, −1.6] 0.002 8.9 ± 8.5 0.1 ± 0.3 −8.7 [−13.6, −3.8] ≤0.001

Kellgren-Lawrence 
grade, % (n)

≤0.001 0.014

0 0 (0) 0 (0) 64.3 (9) 100.0 (16)
1 4.4 (4) 41.0 (25) 35.7 (5) 0.0 (0)
2 14.3 (13) 55.7 (34) 0.0 (0) 0.0 (0)
3 46.2 (42) 3.3 (2) 0.0 (0) 0.0 (0)
4 35.2 (32) 0 (0) 0.0 (0) 0.0 (0)
JSW (mm) 2.1 ± 1.3 4.4 ± 0.7 2.4 [2.0, 2.7] ≤0.001 3.8 ± 0.6 4.6 ± 0.7 0.8 [0.1, 1.4] 0.046
JSN score 1.5 ± 0.5 0.1 ± 0.2 −1.4 [−1.6, −1.3] ≤0.001 0.9 ± 0.3 0.1 ± 0.3 −0.8 [−1.0, −0.6] ≤0.001

Results are mean ± standard deviation (SD) or number (n) and percentage (%) of participants.
BMI, body mass index; CI, confidence interval; JSW, joint space width; JSN, joint space narrowing, score (scoring at baseline was 0-2, as described in the OAI database); 
WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index.

a The classification of structural progressors and non-progressors is detailed in the Methods section.
b Continuous variables were analyzed using Student’s t-test or the Mann-Whitney test, while proportions were compared using the Chi-squared test or Fisher’s exact test. P 

values ≤0.050 (in bold) were considered statistically different.

Table I                                                                                                       

Participants baseline characteristics. 
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iteration, 107 clusters were formed with correlations below 0.40 
(Supplementary Table S1A).

One miRNA was selected for each cluster based on the Reduction 
in the Sum of Squares Ratio (RS Ratio) value, a metric derived from 
the VarClusHi clustering model to ensure representativeness. The RS 
Ratio quantitatively measures each miRNA’s contribution to the total 
variance within its respective cluster. The list of the 107 selected 
miRNAs is provided in Supplementary Table S1B.

Feature selection

In addition to the 107 selected miRNAs, we incorporated four risk 
factors associated with OA: age, sex, BMI, and race (1, Caucasian and 
2, African American). Of note, these factors have also been shown to 
impact circulating miRNA.22 Using these 111 features, we aimed to 
identify the top predictors of knee OA structural progression. This 
feature selection approach embraced a comprehensive exploration 
of diverse models, including Decision Tree,23 Elastic Net,24 Gradient 
Boosting Machine,25 Lasso,25 Random Forest,26 Recursive Feature 
Elimination,27 and Ridge Regression.28 Each method underwent 
rigorous evaluation within a fivefold cross-validation setup, repeated 
five times for hyperparameter tuning. We selected the best machine 
learning model based on its performance during cross-validation on 
the training dataset, leveraging metrics such as AUC, accuracy, sen
sitivity, and specificity, with their 95% CI. The model was then 
evaluated on the test dataset, and we further ensured robustness by 
performing a validation analysis using an independent set of OAI 
participants.

Feature relative importance and impact

Relative feature importance was calculated using the caret 
package in R with the varImp function, in which the Relative im
portance = (Importance - Minimum Importance)/Maximum 
Importance - Minimum Importance) * 100. The impact of each fea
ture was analyzed using logistic regression.

Machine/deep learning model development

The model development process was characterized by a multi
faceted exploration, encompassing an array of machine/deep 
learning models, including Artificial Neural Network (ANN),29 De
cision Tree,23 Kernel Support Vector Machine,30 Penalized Logistic 
Regression,25 Random Forest,26 Ridge Regression,28 and Support 
Vector Machine.31 As mentioned above, each model was evaluated 
with fivefold cross-validation with five repetitions. AUC, accuracy, 
sensitivity, specificity and their [95% CI] were assessed to find the 
best model. We established pre-specified decision rules for model 
evaluation, where AUC [95% CI] was our primary metric for assessing 
model performance, with a minimum acceptable threshold of 0.70 
for the point estimate. Secondary performance thresholds included a 
minimum accuracy of 0.75 and balanced performance between 
sensitivity and specificity (difference < 0.15). To ensure robust esti
mates of model performance, we used the Agresti-Coull interval16

for the modeling cohort and the Wilson score interval17 for the va
lidation cohort to calculate the 95% CI for all accuracy metrics in all 
models.

The generalizability and robustness of the models were also as
sessed with a validation dataset (independent to the one used for the 
modeling) of plasma samples. For model validation assessment, we 
applied the same decision rules as described above. The optimal 
model was further evaluated with an internal validation performed 
with the Monte Carlo cross-validation with 100 simulations to en
sure its robustness and stability.

Results

Participants

The post hoc sample size calculation showed that 46 participants 
per group were required for reliable AUROC estimation. Our dataset 
of 152 total samples (91 progressors and 61 non-progressors) ex
ceeded this requirement, ensuring sufficient power for model de
velopment and minimizing the risk of Type I and Type II errors.

Comparisons of the baseline participants characteristics of the 
modeling cohort (Table I) showed that the participants in the non- 
progressor group were younger, the Caucasians were all in the 
progressor group, and the African Americans were in the non-pro
gressor group. The independent validation dataset (Table I) in
dicated, among the progressors and the non-progressors, no 
significant differences in sex, BMI, age, and race. However, both 
modeling and validation participants significantly differed in the 
Western Ontario and McMaster Universities Osteoarthritis Index 
(WOMAC) scores, KL grades, JSW, and JSN measurements. Of note, 
the average WOMAC scores, KL grades, and JSN were lower in the 
validation cohort than in the modeling (Table I), potentially because 
a larger proportion of participants from the OAI progression sub
cohort was in the modeling cohort versus the validation cohort.

Feature selection

The input for each of the seven screened machine-learning 
models included the 107 selected miRNAs from the clustering ana
lysis plus four OA risk factors: age, sex, BMI, and race. As represented 
in Supplementary Table S2, although the Random Forest model ex
hibited higher AUC and specificity, Elastic Net demonstrated su
perior accuracy and sensitivity. Elastic Net was preferred due to its 
better handling of multicollinearity and robust performance in im
balanced datasets, making it the chosen model for feature selection. 
Using Elastic Net, the ten top features were identified. They con
sisted of race2 indicator (African American), age, and BMI, plus seven 
miRNAs: hsa-miR-141-3p, hsa-let-7c-5p, hsa-miR-556-3p, hsa-miR- 
3667-5p, hsa-miR-3157-5p, hsa-miR-200a-5p, hsa-miR-224-5p. The 
respective importance of each feature is illustrated in Fig. 2.

Although the race2 indicator had the highest impact on pre
dicting knee OA progressors, we hypothesized that this was driven 
by the fact that all the African Americans were labeled as non-pro
gressors in this cohort. To further assess this, we investigated whe
ther removing the race2 indicator and BMI (which exhibited very 
low impact) as inputs affected the model accuracies (Fig. 3). In the 
receiver operating characteristic (ROC) curves, discrimination 
thresholds are systematically adjusted to assess the classifier’s per
formance across different operating points, providing insights into 
its ability to discriminate between the two classes. Fig. 3A illustrates 
that excluding race2 and/or BMI as inputs did not influence the 
Elastic Net model’s performance. Consequently, these features were 
excluded from further analysis. Fig. 3B shows the importance of the 
selected features when race2 and/or BMI are discarded.

Machine/deep learning prediction model development

Seven advanced machine/deep learning-based models were ex
plored to develop the optimal predictive model. The hyperpara
meters of each model were tuned to enhance their predictive 
capabilities. We systematically varied the composition of feature 
subsets, ranging from a minimum of three to all eight selected fea
tures (age and seven miRNAs), across all seven models. This thor
ough exploration resulted in extensive model iterations, as each 
model was tested with every possible combination of selected fea
tures within the specified range. This approach enabled us to 
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identify the most informative features for each model, tailoring the 
model’s input to its specific strengths and characteristics.

The optimal feature combinations for both the modeling and va
lidation cohorts for each machine/deep learning model are presented 
in Table II. The culmination of our predictive modeling revealed 
that ANN with five features (age and four miRNAs, hsa-miR-556-3p, 

hsa-miR-3157-5p, hsa-miR-200a-5p, and hsa-miR-141-3p) achieved 
the best prediction performance (Fig. 4). In the modeling cohort, we 
observed an AUC of 0.94 [0.89, 0.97)], which surpasses our primary 
metric threshold of 0.70 (lower bound), indicating strong general
ization potential (Table II). The accuracy was 0.84 [0.77, 0.89], above 
our secondary threshold of 0.75 (lower bound), while sensitivity and 

Fig. 2                                                                                                         

The relative importance of the top ten selected features using the Elastic Net model. BMI (body mass index); Race2, indicator of African Americans.

Fig. 3                                                                                                         

(A) The ROC curve for Elastic Net models with and/or without race2 and BMI. ROC curves plot sensitivity (true positive rate) on the y-axis against 
1-specificity (false positive rate) on the x-axis, with the diagonal indicating random chance. (B) Feature relative importance for the Elastic Net 
models with and/or without race2 and BMI. AUC [], area under the curve [95% confidence interval]; BMI, body mass index; Race2, indicator of 
African Americans.

A. Jamshidi et al. / Osteoarthritis and Cartilage 33 (2025) 330–340 335

Downloaded for Anonymous User (n/a) at University of Montreal Hospital Centre from ClinicalKey.com by Elsevier on February 
19, 2025. For personal use only. No other uses without permission. Copyright ©2025. Elsevier Inc. All rights reserved.



specificity were 0.89 [0.81, 0.94] and 0.75 [0.63, 0.85], respectively. 
The lower bound of the specificity fell below 0.70 due to the inherent 
variability in our training data and the influence of a relatively small 
sample size of 152 samples, with 20% allocated as test data. This 
variability can lead to less stable estimates, particularly for specificity, 
where misclassification of a few samples can significantly impact the 
overall measure, as noted by the acceptable performance difference 
of < 0.15.

For the validation cohort, the model yielded an AUC of 0.81 [0.63, 
0.92], accuracy of 0.83 [0.66, 0.93], sensitivity of 0.71 [0.45, 0.88], 
and specificity of 0.94 [0.72, 0.99] (Table 2). Although all maintain an 
acceptable performance difference, the small sample size con
tributed to widening the CI. Subsequently, we performed an internal 
Monte Carlo cross-validation on the final prediction model, utilizing 
100 simulations. These data revealed an average AUC of 0.92 [0.86 to 
0.97], accuracy of 0.85 [0.77, 0.91], sensitivity of 0.84 [0.76, 0.90], and 
specificity of 0.88 [0.80, 0.93] (Supplementary Fig. S2).

Additionally, we examined the contribution of each feature to the 
prediction outcome. As illustrated in Supplementary Fig. S3, our 
findings reveal distinct effects of these features on the prediction, 
with some exerting positive influences while other negative. Speci
fically, age and hsa-miR-3157–5p emerged as positively impacting 
the likelihood of an individual being predicted as a progressor. 
Conversely, hsa-miR-556–3p, hsa-miR-200a-5p, and hsa-miR- 
141–3p were found to have a negative impact on the outcome, 
thereby decreasing the probability of being a progressor.

The ANN designed using the Keras sequential model comprised 
an input layer, a hidden layer with five units and ReLU activation, 
and an output layer with one unit and sigmoid activation. The model 
was compiled with the Adam optimizer set to a learning rate of 

0.001 and binary cross-entropy as the loss function.32 To address 
class imbalances in our training data, we utilized the Synthetic 
Minority Oversampling Technique (SMOTE) implemented via the 
imbalanced-learn library in Python.33 SMOTE generates synthetic 
samples for the minority class, ensuring a more balanced distribu
tion of class labels.34 By augmenting the representation of the 
minority class, SMOTE enhanced the robustness of our developed 
model and improved its generalization capability. Specifically, class 
weights were adjusted, assigning a weight of 1.3 for non-progressors 
and 1 for progressors.

Sensitivity analysis

In examining the clusters from the VarClusHi analysis associated 
with each of the four miRNAs incorporated into an optimally de
veloped ANN model, we observed that all but one miRNA was soli
tary in their respective clusters. Hsa-miR-141-3p was clustered with 
one other miRNA, hsa-miR-194-5p (cluster 7, Supplementary Table 
S1A). This observation prompted a sensitivity analysis to explore the 
potential impact of including hsa-miR-194-5p as one of the features 
in the final model. Data showed that the introduction of hsa-miR- 
194-5p resulted in a notable decrease across all accuracy metrics, in 
which the average AUC and accuracy consistently remained around 
0.56. This decline suggests potential overfitting, given the similarity 
and collinearity between hsa-miR-194-5p and the already included 
hsa-miRNA-141-3p in the model. Furthermore, replacing hsa-miR- 
141-3p with hsa-miR-194-5p in the final model also yielded un
satisfactory results, with both AUC and accuracy decreasing to 0.72 
(modeling) and 0.61 (independent validation). These data also sup
port the selection of hsa-miR-141-3p over hsa-miR-194-5p with the 

Model Optimal Features Cohort AUC 
[95% CI]

Accuracy 
[95% CI]

Sensitivity [95% CI] Specificity 
[95% CI]

Artificial Neural Network Age, hsa-miR-556-3p, hsa-miR-141-3p, hsa-miR- 
3157-5p, and hsa-miR-200a-5p

Modeling 0.94 
(0.89, 0.97)

0.84 
(0.77, 89)

0.89 
(0.81, 0.94)

0.75 
(0.63, 0.85)

Validation 0.81 
(0.63, 0.92)

0.83 
(0.66, 0.93)

0.71 
(0.45, 0.88)

0.94 
(0.72, 0.99)

Decision Tree Age, hsa-miR-556-3p, hsa-miR-200a-5p Modeling 0.86 
(0.80, 0.91)

0.71 
(0.63, 0.78)

0.84 
(0.75, 0.90)

0.42 
(0.31, 0.55)

Validation 0.57 
(0.38, 0.74)

0.71 
(0.52, 0.85)

0.84 
(0.58, 0.96)

0.50 
(0.28, 0.72)

Random Forest Age, hsa-miR-3667-5p, hsa-let-7c-5p, hsa-miR- 
3157-5p

Modeling 0.87 
(0.81, 0.92)

0.90 
(0.84, 0.94)

0.89 
(0.81, 0.94)

0.92 
(0.82, 0.97)

Validation 0.68 
(0.49, 0.83)

0.70 
(0.52, 0.84)

0.57 
(0.33, 0.79)

0.81 
(0.57, 0.93)

Kernel Support Vector 
Machine

Age, hsa-miR-141-3p, hsa-miR-224-5p, hsa-let- 
7c-5p, hsa-miR-200a-5p

Modeling 0.94 
(0.89, 0.97)

0.94 
(0.89, 0.97)

1.00 
(0.96, 1.00)

0.83 
(0.72, 0.91)

Validation 0.78 
(0.60, 0.90)

0.53 
(0.36, 0.70)

0.00 
(0.00, 0.22)

1.00 
(0.81, 1.00)

Penalized Logistic 
Regression

Age, hsa-miR-141-3p, hsa-let-7c-5p, and hsa- 
miR-200a-5p

Modeling 0.95 
(0.90, 0.98)

0.84 
(0.77, 0.89)

1.00 
(0.96, 1.00)

0.58 
(0.46, 0.70)

Validation 0.67 
(0.48, 0.82)

0.60 
(0.42, 0.76)

0.43 
(0.22, 0.67)

0.75 
(0.51, 0.90)

Gradient Boosting Machine Age, hsa-let-7c-5p, hsa-miR-3157-5p, hsa-miR- 
200a-5p

Modeling 0.89 
(0.83, 0.93)

0.81 
(0.74, 0.87)

0.89 
(0.81, 0.94)

0.67 
(0.55, 0.77)

Validation 0.76 
(0.58, 0.89)

0.70 
(0.52, 0.84)

0.79 
(0.52, 0.92)

0.62 
(0.39, 0.81)

Support Vector Machine Age, hsa-miR-3667-5p, hsa-miR-141-3p, hsa-let- 
7c-5p, hsa-miR-3157-5p, hsa-miR-200a-5p

Modeling 0.97 
(0.93, 0.99)

0.90 
(0.84, 0.94)

0.95 
(0.88, 0.98)

0.83 
(0.72, 0.91)

Validation 0.44 
(0.27, 0.63)

0.57 
(0.39, 0.73)

0.21 
(0.08, 0.48)

0.88 
(0.64, 0.97)

The best performance of seven models with the optimum features. AUC, area under the curve; CI, confidence interval.

Table II                                                                                                      

Model performance comparison of machine/deep learning models. 
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clustering method and underscore the superiority of hsa-miR-141- 
3p as a candidate for inclusion in the model.

Discussion

This study introduces a novel deep-learning model for predicting 
knee structural OA progression. To test our hypothesis, we first 
employed a sensitive imaging-based classification to label OAI par
ticipants as progressors and non-progressors. Next, we applied a 
multi-step feature selection process to identify relevant miRNAs. 
Finally, through systematic machine/deep learning-based analyses, 
we developed a miRNA-based prediction model that successfully 
met our goal of predicting OA structural progressors with a high 
performance. The model achieved an AUC of 0.94 [0.89, 0.97] using 
only four miRNAs and age as features. This performance was re
plicated on a validation cohort, with an AUC of 0.81 [0.63, 0.92], 
further confirming the model’s robustness and generalizability.

In previous work,19 we developed a prognosis model for OA 
structural progressors using single nucleotide polymorphism genes 
and mitochondrial DNA haplogroups as biomarkers. In the present 
study, we focused on circulating miRNAs due to their high stability 
in biofluids and their impact on many signaling pathways and cel
lular processes. Unlike genetic markers, which are static, miRNAs 
offer a dynamic and real-time perspective of disease states, cap
turing the intricate and fluctuating regulatory networks that drive 
pathology.35 Moreover, contrasting to the prior work19 in which the 
genes were selected before the model development, we took an 
unbiased sequencing approach and investigated 456 miRNAs. Data 
revealed that four miRNAs, hsa-miR-556–3p, hsa-miR-3157–5p, hsa- 
miR-200a-5p, and hsa-miR-141–3p, along with age, predicted OA 
structural progressors with high performance. Whereas data showed 
that age has the highest relative importance, the model should be 
used as a whole because using fewer than the five features reduced 
the performance mainly on the validation cohort (Supplementary 
Table S3).

In a previous study, several members of the miR-320 family were 
identified as upregulated in fast-progressing knee OA,9 though none 
were determined to be important features within our model. This 
discrepancy could be due to differences in the definitions of OA 
progression used by each study. First, the previous study9 assessed 
fast-, slow-, and non-OA progressors compared to our binary cate
gorization, meaning we combined fast and slow progressors to
gether. Second, though both studies used imaging to discriminate OA 
progressors, the previous study was limited to X-ray characteristics, 
while this present model utilized both X-ray and MRI features.

While three of the miRNAs (hsa-miR-556-3p, hsa-miR-200a-5p, 
and hsa-miR-141-3p) showed a negative impact on the outcome, 
thus decreasing the probability of becoming a progressor, only two 
of them, hsa-miR-141-3p and hsa-miR-556-3p, have been explored 
in OA pathology. Hsa-miR-141-3p is upregulated in OA chondrocytes 
and is responsible for increasing apoptosis and cartilage destruction. 
However, in OA chondrocytes, the target factors differed within 
studies.36,37 In OA joints, hsa-miR-141-3p has also been identified in 
OA fibroblast-like synoviocytes,38 and has been reported to promote 
osteoblastogenesis in OA joints.39 The second miRNA, hsa-miR-556- 
3p, is upregulated in the plasma of individuals with early-stage 
radiographic knee OA.14 This miRNA was shown to target, among 
others, the protein phosphatase 1B (PPM1B),40 which is widely 
distributed in skeletal muscle, playing a role in many signaling 
pathways (p38, JNK, IKK, and Smad2) involved in OA pathology. It 
may also regulate OA cartilage ferroptosis.41

Although hsa-miR-200a has been studied in the development of 
mandibular condylar cartilage42 and osteoblast differentiation43, 
these studies did not mention if it was the −3p or −5p arm. However, 
there is evidence that hsa-miR-200a-5p may regulate lipid meta
bolism44, a process altered in OA. Notably, hsa-miR-200a and hsa- 
miR-141-3p belong to the same family, and although they are located 
on different chromosomes of the human genome, they share a si
milar sequence, suggesting similar biological functions.45,46 Not 
much is known about hsa-miR-3157-5p, but this miRNA 

Fig. 4                                                                                                         

The relative importance of the five features included in the developed ANN model.
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demonstrated a decrease with age in the plasma of a general pro
spective health cohort.47

Finally, the cluster containing hsa-miR-141-3p is shared with 
hsa-miR-194-5p, and while they have common targets, they also 
could have unique direct and indirect targets (Supplementary Fig. 
S4). While this suggested that hsa-miR-194-5p could be important in 
the model, the sensitivity analysis supports the selection of hsa-miR- 
141-3p over hsa-miR-194-5p. Further exploration of these miRNAs 
and their biological function, especially in OA-related processes, will 
improve our understanding of this disease pathophysiology.

To address the problem of the high multicollinearity of the 
miRNAs, we opted to prune the miRNA dataset and select a subset by 
using a hierarchical clustering method, the VarClusHi methodology. 
This technique allowed the selection of a representative miRNA from 
each distinct cluster. While the features were significantly reduced 
from the original dataset, it still posed a risk of model overfitting and 
complexity, which could adversely affect performance and inter
pretability. Therefore, a secondary reduction of the miRNAs was 
essential. At this step, we included four major OA risk factors to align 
the feature selection with clinically relevant predictors. To mitigate 
the risk of feature selection bias, we elected to analyze multiple 
machine learning methods instead of relying on a single approach, as 
different machine learning models have unique strengths and biases. 
Among the models studied, the Elastic Net model was selected due 
to its inherent design, which combines Lasso and Ridge regulariza
tion techniques. Such a combination is particularly effective in 
handling high collinearity and imbalanced data, two characteristics 
present in our dataset. These characteristics of Elastic Net ensure 
that we capture the full range of predictive information, making it 
more suitable for our study.

In developing our optimal prediction model, we employed seven 
distinct machine/deep learning methods, and the ANN out
performed the others, particularly in the validation cohort. This can 
be attributed to its deep learning architecture, which enables it to 
learn layered representations of the data, making it particularly 
adept at handling inter-feature interactions. In addition, it can dis
cern intricate patterns within the data, attributes crucial for pre
dictive accuracy in complex biological datasets.

Although one might question the relevance of developing such a 
prognostic model in the absence of DMOADs, the current model 
holds promise for precision medicine. It could serve as a decision- 
support tool for healthcare professionals, enhancing their ability to 
screen and manage high-risk patients, leading to timely and targeted 
interventions, thus improving patient outcomes. Furthermore, the 
model has high clinical relevance in guiding decision-making for 
future DMOAD studies. At present, the challenges in developing such 
drugs are due at least in part to the fact that often, in these clinical 
trials, patients already exhibit significant structural degeneration. 
Hence, the inability to screen participants based on progression has 
led to trials with insufficient statistical power to evaluate the ef
fectiveness of the intervention. Our prognostic model could address 
this challenge by improving the identification of patients at risk of 
OA progression, thereby lowering trial costs and creating opportu
nities for testing more interventions.

Among the strengths of this study is the significant positive 
correlation observed between serum and plasma miRNAs, con
curring with previous studies.11,48 Such data are important as some 
biochemical parameters demonstrate significant differences when 
employing serum versus plasma samples.49,50 This lends to future 
translation of this miRNA signature as a prognostic tool that can be 
applied to either serum or plasma in clinical settings, supporting the 
utility of miRNAs as biomarkers for disease.

A second strength of this study is incorporating an internal cross- 
validation analysis while systematically exploring multiple model 
frameworks for the feature selection, modeling, and validation 

assessment. For the final prediction model, we chose the Monte 
Carlo technique due to its effectiveness in handling limited and 
imbalanced datasets, for which traditional n-fold cross-validation 
approaches would have been inadequate. A third strength, classi
fying knee OA participants into structural progressors and non- 
progressors by applying two baseline imaging features, MRI and 
radiography,4 offers a more thorough evaluation of knee OA struc
ture. Fourth, we chose to use machine/deep learning approaches 
instead of statistical analysis for the prediction modeling, as it is well 
known that while the latter frequently reveals many associations, it 
lacks predictive significance.51 Fifth, this model was developed by 
leveraging high-throughput miRNA-sequencing data, the most 
comprehensive and unbiased method of quantifying miRNAs cur
rently available. Finally, for two of the miRNAs identified in our 
predictive model, hsa-miR-200a-5p and hsa-miR-3157-5p, this is the 
first report of their association with OA.

Among the study’s limitations was that participants included 
Caucasians and African Americans, all from North America, while 
other ethnic groups from Europe or Asia, for instance, could be 
studied for broader generalization. Furthermore, although our total 
sample size of 152 is considered above adequate power for miRNA 
biomarker discovery,52 one can argue that it may be limited for 
machine/deep learning model development. To address the rela
tively small sample sizes, at the beginning of our analysis, we ap
plied variable clustering to reduce the dimensions of miRNA features 
from 456 to 107. This technique allowed us to have fewer features 
than the number of samples (n=152), which helped us avoid over
fitting. Moreover, the methodological approaches focusing on max
imizing the informativeness of each sample, utilizing feature 
selection, is particularly effective in small sample sizes as it can 
handle datasets with a high feature-to-sample ratio, thereby les
sening the risk of overfitting. We also conducted a sample size cal
culation, confirming that the number of samples provided reliable 
estimates of model performance. In addition, we applied several 
metrics, such as AUC [95% CI] using the Agresti-Coull interval for the 
modeling cohort and the Wilson score interval for the validation 
cohort in all feature selection and prediction model analyses, along 
with accuracy, sensitivity, specificity and their [95% CI] for all 
models. As mentioned above, we also implemented Monte Carlo 
cross-validation with 100 simulations to ensure the robustness and 
stability of our final prediction model. Finally, the model robustness 
was further confirmed through the validation cohort, substantiating 
the generalizability of the developed ANN model.

In conclusion, this study enriches the knowledge of miRNAs in OA 
and provides a signature for early prognosis of knee structural pro
gression. The signature comprising four circulating miRNAs, hsa- 
miR-556–3p, hsa-miR-3157–5p, hsa-miR-200a-5p, and hsa-miR- 
141–3p, combined with age, can distinguish, at an early stage and 
independent of disease status, individuals likely to develop pro
gressive knee OA. This prognosis model could inform future research 
by providing insights into factors that may influence disease pro
gression and outcomes, revealing patterns that may not be im
mediately apparent and thus advancing our understanding of 
disease pathophysiology. For healthcare professionals, this medical 
prognosis model for early prediction of OA progressors could allow 
for more personalized and targeted treatment plans, leading to 
better outcomes. Moreover, it could also be beneficial for patients, as 
being better informed may support decision-making and encourage 
adherence to current interventions. This is especially important if 
the patient has modifiable risk factors that could impact their out
comes. As mentioned above, this prognosis model will also assist in 
the development of more effective DMOADs via the recruitment of 
progressors to clinical trials.

Looking ahead, the next step involves transforming this auto
mated screening model into a comprehensive, user-friendly 
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application. This will simplify the prognostic process, making it ef
ficient and easy to use for healthcare professionals who encounter 
OA. Once integrated into clinical workflows, this tool has the po
tential to enhance personalized patient care by facilitating early 
intervention and tailored treatment plans based on each patient’s 
unique risk profile.
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