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Abstract
Purpose  Vertebral compression fractures (VCFs) are the most prevalent skeletal manifestations of osteoporosis in cancer 
patients. Yet, they are frequently missed or not reported in routine clinical radiology, adversely impacting patient outcomes 
and quality of life. This study evaluates the diagnostic performance of a deep-learning (DL)-based application and its potential 
to reduce the miss rate of incidental VCFs in a high-risk cancer population.
Materials and methods  We retrospectively analysed thoraco-abdomino-pelvic (TAP) CT scans from 1556 patients with 
stage IV cancer collected consecutively over a 4-month period (September–December 2023) in a tertiary cancer center. A 
DL-based application flagged cases positive for VCFs, which were subsequently reviewed by two expert radiologists for 
validation. Additionally, grade 3 fractures identified by the application were independently assessed by two expert interven-
tional radiologists to determine their eligibility for vertebroplasty.
Results  Of the 1556 cases, 501 were flagged as positive for VCF by the application, with 436 confirmed as true positives 
by expert review, yielding a positive predictive value (PPV) of 87%. Common causes of false positives included sclerotic 
vertebral metastases, scoliosis, and vertebrae misidentification. Notably, 83.5% (364/436) of true positive VCFs were absent 
from radiology reports, indicating a substantial non-report rate in routine practice. Ten grade 3 fractures were overlooked or 
not reported by radiologists. Among them, 9 were deemed suitable for vertebroplasty by expert interventional radiologists.
Conclusion  This study underscores the potential of DL-based applications to improve the detection of VCFs. The analyzed 
tool can assist radiologists in detecting more incidental vertebral fractures in adult cancer patients, optimising timely treat-
ment and reducing associated morbidity and economic burden. Moreover, it might enhance patient access to interventional 
treatments such as vertebroplasty. These findings highlight the transformative role that DL can play in optimising clinical 
management and outcomes for osteoporosis-related VCFs in cancer patients.
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Introduction

Vertebral fractures are the most common type of fracture 
linked to osteoporosis, accounting for up to 50% of all 
fractures in individuals with this condition [1–3]. These 
fractures predominantly involve vertebral compression 
fractures (VCFs) of the thoracic and lumbar vertebral 
bodies [4, 5]. The overall prevalence of vertebral frac-
tures worldwide was estimated at approximately 20% [6]. 
Despite this high prevalence, VCFs frequently remain 
asymptomatic and clinically undetected, resulting in 
underdiagnosis and suboptimal patient management [7–9]. 
Undiagnosed VCFs are associated with increased mortal-
ity, a heightened risk of subsequent fractures—particularly 
hip neck fractures—and a greater likelihood of immobility 
[1, 10–12]. Collectively, these factors contribute to poor 
prognoses and significantly diminished quality of life [13, 
14].

Cancer patients face an elevated risk of vertebral frac-
tures. Indeed, the spine is the most frequent site of skeletal 
metastases, which trigger osteoclast activation, irregular 
bone trabeculae formation, and bone resorption [15, 16]. 
Cancer therapies like chemotherapy agents and glucocor-
ticoid treatment can reduce bone mineral mass through 
direct bone toxicities and indirect sex hormone lowering 
mechanisms [17, 18]. Additionally, sex hormone level low-
ering is a strategy for the treatment of hormone-dependent 
tumors [17, 19]. Moreover, cancer predominantly affects 
an aging population, which is already susceptible to bone 
pathology and osteoporosis due to age-related declines in 
sex hormone levels [19]. Radiotherapy and radionuclide 
treatments, as well as cancer immunotherapy, favor bone 
mineral loss and bone fractures [17, 20–22]. Hence, test-
ing for VCF and osteoporosis might significantly improve 
cancer patient management and outcomes.

Computer tomography (CT) is a widespread examina-
tion in cancer patients and was demonstrated to be of high 
usability for opportunistic osteoporosis and VCF fracture 
screening [23, 24]. However, the implementation of oppor-
tunistic pathology detection may be slowed by the exces-
sive demand placed on radiologists. With the advancement 
of deep learning (DL) solutions in radiology, this task can 
be at least partially automated, reducing the clinical work-
load and enhancing radiologists’ efficiency [25, 26]. Deep 
learning applications in radiology are undergoing signifi-
cant advancements, demonstrating their potential as com-
plementary tools to augment radiologists’ performance, 
reduce involvement in repetitive tasks, and mitigate pro-
fessional fatigue [27–29]. Multiple tools for automated 
osteoporosis and VCF screening have been proposed 
recently [30–40]. In this study, we aimed to assess the 
diagnostic performance of an automated deep learning tool 

for VCF detection and quantification (CINA-VCF Quan-
tix, Avicenna.AI, La Ciotat, France) in an asymptomatic 
oncology population undergoing CT imaging as part of 
their regular oncological care. Furthermore, we examined 
the potential impact on clinical management identifying 
patients with VCF that would benefit from vertebroplasty 
and that were not reported by radiologists during standard 
evaluations.

Materials and methods

Ethical considerations

This study was approved by the Institutional Review Board 
of Gustave Roussy Cancer Campus (no.: 2024-381). The 
need for written informed consent was waived. Avicenna.
AI provided the VCF detection DL-based algorithm for this 
study. The study received no financial support.

Data collection and study design

All consecutive thoraco-abdomino-pelvic (TAP) CT scans 
performed from September to December 2023 at the Insti-
tute Gustave Roussy (Villejuif, France) for patients with 
stage IV cancer were retrospectively collected. CT scans 
were acquired on GE Healthcare GE Optima CT660 (GE 
Healthcare, Milwaukee, WI, USA) and Siemens Health-
ineers SOMATOM® Force Dual Source CT system (Sie-
mens Healthineers, Erlangen, Germany). Demographic data 
of included patients were collected, including age, gender, 
cancer type, bone metastatic status, and spinal treatment 
status.

All collected cases were analyzed by CINA-VCF Quan-
tix DL-based application version 0.7 (Avicenna.AI, La 
Ciotat, France) for VCF detection. The cases flagged posi-
tive for VCF (grade 1, grade 2, and grade 3, corresponding 
to—20–25%, 26–40%, and > 40% of vertebral height loss, 
respectively, according to Genants’ classification [41]) were 
reviewed by two expert radiologists (one senior and one jun-
ior) in order to validate the VCF findings. The DL-based 
application performance was retrospectively compared to 
the radiological assessment, based on the available reports.

All grade 3 fractures detected by DL application were 
independently analyzed by two expert interventional radi-
ologists, with 10 and 2 years of experience respectively, to 
assess whether they would have treated these severe verte-
bral fractures with vertebroplasty or not.

Finally, as previously reported, to evaluate osteoporosis 
risk, anterior trabecular CT attenuation values of the L1 ver-
tebra in mean Hounsfield units (HU) were evaluated [42]. 
Using a region-of-interest (ROI) approach, mean HU values 
were automatically computed by the DL application for all 
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scans in which the L1 vertebra was visible in the absence of 
sclerotic metastases and fractures.

Deep learning algorithm and training methodology

The DL-based algorithm, developed by Avicenna.AI (CINA-
VCF Quantix v0.7, La Ciotat, France), was developed and 
trained as previously reported [43]. In brief, the algorithm 
was built on 2D/3D U-Net-based CNN architectures. It iden-
tifies and standardizes the spine, detects and labels thoracic 
and lumbar vertebrae, and excludes vertebrae with cement or 
other materials. The model was trained on 12,402 vertebrae 
collected from 886 cases sourced from both U.S. and French 
centers between 2021 and 2022. The datasets encompassed 
a broad clinical diversity, ensuring balanced representation 
across scanner manufacturers, patient age groups, genders, 
contrast types, fields of view, and slice thicknesses. Specifi-
cally, the vertebral height loss (VHL) algorithm was trained 
on a representative subset of the training dataset compris-
ing 325 cases, representing 3576 individually annotated 
vertebrae. Each vertebral level between T1 and L5 was rep-
resented, with L1 the lowest frequency (100 occurrences) 
and T11–T12 the highest (198 occurrences), reflecting the 
targeted fields of view coverage. The annotation process was 
the same for the training and pilot validation datasets, result-
ing for each vertebra in six coplanar points per vertebra cor-
responding to the endpoints of the vertebral body’s anterior, 
middle, and posterior measurement segments. The model 
was then trained to reproduce the landmarks positioned on 
a 2D patch centered around the vertebral body in the sagit-
tal plane defined by the measures. The algorithm quantifies 
intra and intervertebral height loss relative to neighboring 
vertebrae, calculate VHL and derives the Genant grade from 
it. As a final step, an ad-hoc algorithm defines an elliptical 
region-of-interest (ROI) placement on the mid-vertebra body 
level, in the axial plane, for mean HU measurement. Outputs 
include vertebral labels, VHL grades (Genant’s 1–3 grade 
fractures), and mean HU values for L1–L4 or T8–T11 if the 
lumbar spine is not in the field of view.

To minimize the biases in the model training, the selec-
tion process specifically targeted a distribution of the grades 
at the vertebra level close to the general population preva-
lence (89.1% grade 0, 4.5% grade 1, 4.7% grade 2, and 1.7% 
grade 3). It included 55.7% of patients with at least a verte-
bra of grade > 0 and 44.3% of patients with at least one con-
founding factor. Due to the limited number of patients with 
bone metastasis, data augmentation included Hounsfield 
Units shifts. A stratified sampling strategy was used during 
the minibatch construction to compensate for the generally 
low prevalence of high grades.

The algorithm was evaluated on an independent pilot 
dataset comprising 1,994 vertebrae from 152 cases. It dem-
onstrated a sensitivity of 92% (95% CI 82–97%), a specificity 

of 99% (95% CI 93–100%), and an overall accuracy of 96% 
(95% CI 92–99%) for detecting VCFs. Vertebral labeling 
reached an accuracy of 98% (95% CI 94.3–99.6%), with a 
95% limit of agreement for the height loss at the vertebra 
level of [− 9.89%, 10.57%] and a bias of 0.34%. A strong 
correlation (ranging from 0.6 to 0.8) for mean Hounsfield 
Unit (HU) measurements was achieved.

Statistical analysis

Per-patient and per-vertebra positive predictive values (PPV) 
for VCF detection were calculated by comparing DL-based 
application results with the evaluations made by two clinical 
expert radiologists who evaluated only flagged as positive by 
DL application cases. The per-patient and per-vertebra VCF 
non-reported rates were evaluated by comparing the soft-
ware results with clinical reports. Finally, the vertebroplasty 
missed rate was calculated based on the comparison of a 
documented clinical report and the independent evaluation 
of two expert interventional radiologists. All the statistical 
analyses were performed using MedCalc Statistical Software 
(v20.015, MedCalc Software Ltd., Ostend, Belgium).

Results

Study population

For this study, a total of 3055 computed tomography (CT) 
scans were collected over a 4-month period, spanning from 
September to December 2023. All cases were processed 
by CINA-VCF Quantix application. Of these, 1499 scans 
(49.1%) were excluded by the DL-based application due to 
non-compliance with the acquisition protocol (Fig. 1). The 
exclusions were attributed to patient age (as the applica-
tion processes cases from patients aged 50 years and older) 
and incompatible slice thickness or reconstruction ker-
nel. Among the 1556 CT scans retained in the study, 506 
instances were flagged as positive for vertebral compression 
fracture by the application. After a detailed review, among 
positively flagged CT scans, five corresponded to secondary 
examination of the same patients with VCF during the study 
period, so they were excluded as duplicated data (Fig. 1). 
Finally, the 501 flagged as positive individual patients by 
CINA-VCF Quantix were retained for statistical analysis. 
The mean age for the 501 patients was 63.6 ± 11.5 years, and 
there were 231 (46.1%) of women. For the patients for whom 
the data on metastasis, osteoporosis, or interventional treat-
ment of VCF were accessible, the distribution was as fol-
lows: mean bone density was 126.04 ± 46.32 HU (n = 431); 
bone metastases were present in 140 (31.46%) out of 445 
patients with available data; osteoporosis was present in 217 
(50.46%) out of 430 patients with accessible record. Finally, 
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32 (7.26%) out of 441 patients with available information 
had previous interventional treatment of VCF. Table 1 and 
Fig. 1. Supplementary Fig. 1 presents particular situations 
in the dataset.

Diagnostic performance of the DL‑based application

After a careful review of 501 flagged as positive by DL-
based application cases, two expert radiologists in a consen-
sus analysis confirmed 436 cases as true positive (TP) for 
VCF. Regarding primary tumor distribution for TP cases, 
lung, head and neck, and skin (excluding melanoma) tumors 
contributed to 19.2%, 18.8%, and 10% of cases, respectively. 
Hormone-dependent tumors were equally presented in the 
dataset with 8.6% of cases with prostate cancer and 7.6% 
of cases with breast tumors. Supplementary Fig. 2 presents 
additional data distribution in terms of primary tumor sites. 
Sixty-five cases were considered as being false positive (FP), 
leading to a PPV of 87.0% (95% CI 83.8–89.8%) (Fig. 1). 

Representative examples of true negative (TN) and true posi-
tive (TP) notifications are presented in Fig. 2.

Regarding individual vertebrae, among the 436 true 
positive cases, there were 683 individual VCFs. Of these, 
680 were correctly identified by the DL-based application; 
hence, three VCFs were missed. Additionally, the applica-
tion identified 164 vertebrae as fractured; however, expert 
radiologists classified them as false positives, leading to a 
per-vertebra PPV of 80.6% (95% CI 77.7–83.2%) (Fig. 1). 
Examples of false negative and false positive detections are 
presented in Fig. 3. Regarding the VCF grade, 350 cases 
were considered as grade 1 (1 FN, 75 FPs, and 274 TPs), 
452 cases as grade 2 (1 FN, 75 FPs, and 376 TPs), and 45 
cases as grade 3 (1 FN, 14 FPs, and 30 TPs), according to 
the experts.

The main reasons related to false positives were: sclerotic 
vertebral metastases, which impede vertebral height meas-
urement; scoliosis; and incorrect centroid detection due to 
the vertebrae deformation or collapsing (Fig. 3A–C). In this 

Fig. 1   Study flowchart and soft-
ware performances. From 3,055 
collected CT scans, 1556 scans 
passed the acquisition protocol 
of the CINA-VCF Quantix 
application. 501 individual 
patients were flagged positive 
and reviewed by two expert 
radiologists. The number of true 
positive cases was established 
and the positive predictive value 
(PPV) was calculated. The data 
was analyzed per scan and 
per vertebrae level. The PPV 
was calculated for all fractures 
and for grade 1–2 and grade 3 
fractures separately. Some cases 
included both grade 1–2 and 
grade 3 fractures

Table 1   Patient cohort characteristics

*In parenthesis (): number of available data

Characteristic Flagged positive by CINA 
(VCF Quantix) Total: 501

All TP cases Total: 436 Grades 1 and 2 TP 
fractures Total: 418

Grade 3 TP fractures Total: 25

Mean bone density (L1) mean 
HU ± SD

126.04 ± 46.32 (n = 431)* 126.00 ± 46.03 (n = 421) 127.56 ± 45.61 (n = 404) 84.88 ± 40.59 (n = 24)

Sex women, % 46.10% (231/501) 48.17% (210/436) 47.61% (199/418) 52% (13/25)
Age mean ± SD 63.59 ± 11.49 (n = 501) 63.35 ± 11.56 (n = 436) 63.19 ± 11.61 (n = 418) 68.36 ± 9.57 (n = 25)
Bone metastases % of patients 31.46% (140/445) 31.87% (138/433) 31.33% (131/415) 48% (12/25)
Osteoporosis % of patients 50.46% (217/430) 50.48% (212/420) 49.63% (200/403) 75% (18/24)
Vertebroplasty % of patients 7.26% (32/441) 7.18% (31/433) 6.3% (26/414) 20% (5/25)
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latter case, the DL-based application displays a dot in the 
region to alert the user that there is a high probability that 
the displayed height loss may not be correct (Fig. 3C).

Concerning the false negatives (Fig.  3D), two main 
sources of inaccuracies of the current algorithm were iden-
tified, related to vertebral body count and vertebral cen-
troid identification. Both sources of false negatives will be 
addressed in the Discussion.

Detection of VCFs not reported by radiologists

Among 436 true positive cases, 364 (83.5%) were not men-
tioned in radiology reports. Therefore, these patients can be 
considered missed or unreported by radiologists in routine 
clinical practice (Fig. 4). Regarding per-vertebra findings, 
of the 680 fractures correctly detected by the DL-based 

application, 550 (80.9%) were not reported by radiologists 
(Fig. 4). Of these fractures, 540 were classified as grade 1 
or grade 2, accounting for 83% of all 650 true positive grade 
1 and grade 2 fractures. These corresponded to 85.7% (358 
of 418) of patients. Moreover, 10 grade 3 fractures out of 
30 (33.3%) were not reported by radiologists (Fig. 4). These 
corresponded to 36.0% (9 of 25) of patients.

Regarding the fracture localization, among 650 grade 1 
and 2 fractures, 317 (48.8%) thoracic and 315 (48.5%) lum-
bar vertebrae were fractured. No difference in application 
performance, neither for thoracic nor for lumbar vertebrae, 
has been noticed. Among 202 vertebral fractures of patients 
with grade 1 and 2 fractures presenting vertebral metastases, 
41 (20.3%) fractures were related to the metastatic process. 
Moreover, regarding grade 3 VCFs, 22 (73.3%) out of 30 
fractures were localized in the thoracic and 8 (26.6%) in the 

Fig. 2   Examples of negative 
and positive cases detections. A 
Negative case. The DL-based 
application quantifies intra and 
intervertebral height loss rela-
tive to neighboring vertebrae. 
The threshold for positive 
cases is set to 20% of height 
loss. Variation of height loss is 
presented in percentage for each 
vertebra. Mean HU is indi-
cated for L1–L4 vertebrae. B 
Positive case. Grade 2 vertebral 
fracture of T7 in an osteo-
porotic patient—Height loss 
estimated at 32.2%—Mean HU 
L1 trabecular attenuation: 96.7 
HU (physiological reference 
122–198 HU). C Positive case. 
Grade 2 vertebral fracture of 
L4 in a patient with lytic bone 
metastasis. D Positive case. 
T12 grade 3 vertebral fracture 
and L3, L5 grade 1 vertebral 
fracture identified
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Fig. 3   Examples of false positive and false negative notifications. A 
False-positive case due to an error in vertebral height measurement 
because of sclerotic vertebral metastases. B False-positive case due 
to incorrect height measurement linked to scoliosis. C False-positive 

case due to incorrect vertebra centroid detection. AI displays a circle 
in the region to alert that the height loss may not be correct. D False-
negative for grade 3 T7 vertebral fracture

Fig. 4   Vertebral fractures not 
reported by radiologists. Among 
501 cases (841 vertebrae) 
flagged for vertebral fracture by 
DL-based application, 436 cases 
(680 vertebrae) were confirmed 
to be true positives by two 
expert radiologists. The analysis 
of radiology reports revealed 
the number of non-reported 
fractures by radiologists in 
general practice. Two expert 
interventional radiologists 
independently reviewed severe 
(grade 3) vertebral fractures. 
Among 10 non-reported cases 
by radiologists, nine would have 
been indicated to vertebroplasty
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lumbar spine. Among the 13 fractures of patients with grade 
3 VCFs presenting vertebral metastases, 6 (46.2%) fractures 
were related to the metastatic process.

Outcomes for clinical management

Finally, two interventional radiology experts, with 10 and 
2 years of clinical experience, independently reviewed all 
grade 3 fractures to assess the potential indication for ver-
tebroplasty in these severe cases. Among the 30 fractures 
reviewed, cementoplasty was recommended in 27 cases. Of 
the 10 fractures initially overlooked by radiologists, cemen-
toplasty was deemed appropriate in nine cases (Fig. 4). This 
analysis highlights that 33% (9/27) of fractures requiring 
intervention were detected by the DL-based application 
but were not reported during routine clinical practice by 
radiologists.

Discussion

The purpose of this study was to evaluate the diagnostic 
performance of a DL-based application for incidental VCF 
detection on routine CT scans of asymptomatic oncological 
patients. The DL-based tool demonstrated a per-case PPV 
of 87.0% and a per-vertebra PPV of 80.6% for all VCFs. 
For grade 3 VCFs, the per-case and per-vertebra PPV were 
71.4% and 68.2%. Regarding grade 1–2 VCFs, these values 
were 88.4% and 81.3%, respectively. Radiologists did not 
describe in the reports 83.5% of cases with VCF and 80.9% 
of individual vertebrae fractures detected by DL-based appli-
cation. Finally, of the 10 vertebrae with grade 3 fractures 
that were not reported by radiologists and detected by the 
DL-based tool, nine required an interventional procedure, 
as assessed by two experienced interventional radiologists.

The automated detection of VCFs is a growing area of 
research. Various solutions have been proposed across dif-
ferent imaging modalities. Deep learning (DL) tools for 
standard radiographs have demonstrated high accuracy in 
VCF detection, exceeding 98.5% [44, 45]. Moreover, these 
tools have proven to be cost-effective for healthcare systems 
[46]. Automated VCF detection on MRI has shown perfor-
mance comparable to that of spine surgeons [47]. Notably, 
a DL application for MRI-based VCF detection significantly 
improved accuracy among less-experienced radiologists 
[48]. DL algorithms for CT-based VCF detection are also 
advancing, with tools capable of vertebral labeling, segmen-
tation, and metastasis detection [35, 39]. Additionally, CT 
has proven to be an optimal modality for automated osteo-
porosis screening, which is particularly relevant for appli-
cations detecting VCFs [34, 36, 37]. The performance of 
DL tools for VCF detection on CT has ranged from 47.4 to 
98.7% in sensitivity and from 63.9 to 95.8% in specificity 

[31, 33, 38, 40]. The application currently under evaluation, 
CINA-VCF Quantix, previously demonstrated a sensitivity 
of 92.3% and specificity of 91.7% in a previous study [43].

Regarding the current study, the application demonstrated 
relatively high PPV values (87.0% for overall per-case PPV). 
The lowest PPV was documented for grade 3 VCFs (71.4% 
for overall per-case PPV). It represented 10 false positive 
cases out of 35 alerts generated by DL-based applications. 
The main reasons for these false positive detections were 
sclerotic vertebral metastases, scoliosis, and incorrect cen-
troid detection. All these causes lead to incorrect vertebral 
height measurement. Given this PPV, radiologists would 
need to review an additional one-eighth of the flagged cases. 
However, since these cases are associated with confounding 
factors and pathologies highly impacting patient life quality, 
reviewing these cases can be very advantageous. Regarding 
the previously published literature, PPV of 46.7% [32] and 
13.9% [40] have been previously reported for other auto-
mated DL-based tools for VCF detection. Therefore, the 
currently evaluated application performed better and dem-
onstrated interesting performance for its implementation in 
clinical practice.

Regarding false positives, the DL-based application was 
found to generate erroneous alerts in the presence of con-
founding factors such as sclerotic metastases and scoliosis. 
To mitigate these inaccuracies, a dedicated dataset enriched 
with cases exhibiting these conditions could be employed for 
training. However, false positives associated with scoliosis, 
particularly those arising from inaccurate centroid estima-
tions, might persist despite this strategy. To address this 
limitation, the implementation of a specialized algorithm 
for the reorientation of scoliotic vertebrae along the cranio-
caudal axis might be proposed.

Concerning the false negatives, two main sources of inac-
curacies were identified. The first source of inaccuracies 
takes place at the measure level. The landmark prediction 
algorithm precision depends both on the acquisition reso-
lution and vertebral body presentation. Because the model 
somehow learned to identify patterns associated with the 
vertebral body contours, it can be confused by either ana-
tomical variations or confounding factors that change the 
general shape or intensity of these contours leading to errors 
in the height loss ratio and potentially a vertebra classified as 
grade 0 instead of 1 or more. The second source of inaccura-
cies takes place in the preliminary steps of general process-
ing where the vertebral body centers are located using a ded-
icated deep learning model. These locations are associated 
with a probability for each candidate vertebra. When this 
probability is below a confidence level, the candidate ver-
tebra is ignored both for the measures and labelling. When 
the ignored vertebra is the only one with a high grade, the 
case can be flagged as negative. Nonetheless, future versions 
of the device will need to address the current limitations 
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revealed by the study. Both sources of errors will clearly 
benefit from more data, with a focus on adding patients with 
more high-grade vertebra and confounding factors which 
are currently either ignored during pre-processing or sub-
ject to landmark misplacements. However, given that in the 
more extreme cases the landmark approach may fail (there 
is a floor in the landmark location accuracy due to the reso-
lution), we may complement the current approach with a 
classifier dedicated to flag these extreme conditions inde-
pendently of the measures themselves.

No difference was observed in the DL application per-
formance for detecting VCF in the thoracic or lumbar spine. 
This consistency is likely due to the training methodology, 
in which the model was trained at the single-vertebra level. 
Vertebral height is assessed individually and compared 
to neighboring vertebrae to compute the vertebral height 
loss (VHL) based on intervertebral height differences. As 
a result, the algorithm operates independently of the ana-
tomical region, exhibiting no bias toward thoracic or lumbar 
vertebrae.

In this study on an asymptomatic oncology patient popu-
lation, we reported that among true positive cases detected 
by DL-based application, radiologists did not report 83.5% 
of VCF-positive patients. This data aligns with previously 
published data, suggesting that radiologists do not report 
84% of patients with VCFs during routine CT scan exami-
nations [49]. In a previously published study on a restricted 
cohort of patients (105 cases), 12 (63.2%) out of 19 true pos-
itive cases detected by the DL-based tool were not reported 
by radiologists [32]. This highlights a significant propor-
tion of patients who are overlooked by specific prophylactic 
measures, as previously reported data indicate that 19.2% of 
individuals with incidental vertebral fractures are likely to 
develop new vertebral fractures within a year [50]. Moreo-
ver, these osteoporotic patients are at an increased risk of 
hip fractures, which, alongside vertebral fractures, account 
for the highest economic burden among all fracture types in 
public health [51]. Therefore, early detection of this high-
risk patient group could prove to be a cost-effective strat-
egy [5, 52, 53]. Among the grade 3 fractures not reported 
by the radiologist, nine would have been eligible for inter-
ventional treatment. Importantly, timely vertebroplasty can 
reduce pain and lower the risk of subsequent fractures [54]. 
Therefore, these patients could have experienced substantial 
clinical benefits if the DL-based tool for VCF detection had 
been implemented during their examination.

This study highlights that 83.5% of VCFs are not reported 
by radiologists in standard clinical practice in a tertiary 
cancer center. However, these results should be reviewed in 
the prism of a real-world clinical practice addressing sev-
eral limitations. First, the scans are performed in asymp-
tomatic patients with no clinical indication of VCF, thus 
the radiologists performed an oncological assessment rather 

than systematically evaluate VCFs. Factors such as work 
fatigue and high workload may impact radiologists’ assess-
ments, limiting the time available for thorough case review 
and reporting, leading to the omission of incidental find-
ings. Second, radiologists often do not describe VCFs if 
they remain stable over several years. Oncological patients 
undergo regular CT scans, often quarterly, over multiple 
years, whereas the current analysis is performed at a single 
time point. It is therefore likely that some fractures detected 
by the software during the study were previously reported 
in an earlier scan, with no significant changes in the cur-
rent examination, leading to their omission in the radiology 
report. Finally, the DL software is highly sensitive compared 
to the radiologists’ eye in detecting grade 1 VCFs. However, 
these fractures have limited clinical or therapeutic relevance. 
Taken together, though the outputs of DL application for 
incidental VCF detection might provide useful clinical infor-
mation, it becomes clinically relevant for patient outcomes 
only upon radiologist review.

Two clinical strategies of radiologist-DL tool interactions 
were previously proposed concerning incidental findings like 
VCF. On the one hand, DL-based applications can help inci-
dental pathologies detection by acting as a second reader 
to catch missed cases. On the other hand, it can serve as 
a triage tool, prioritizing DL-flagged alerts, thus enhanc-
ing efficiency of incidental findings detection. However, 
this latter strategy risks to overlook false negative cases not 
flagged by DL-based application. It can be overcome by an 
adjustable balance between sensitivity and specificity of the 
application and clinical workflow optimization [55]. Regard-
ing CINA-VCF Quantix, this application demonstrated to be 
a useful tool for complementary use in radiology practice, 
which would improve clinical workflow with the potential 
to reduce radiologists’ workload and improve vigilance for 
incidental VCF findings. We consider that both proposed 
strategies for DL tool implementation have the potential to 
be effective for the detection of VCFs in clinical routine. 
However, their efficacy should be evaluated individually, 
taking into account the specific needs of each clinical center, 
its area of specialization, and the clinical protocols in place 
for management of patients with VCF findings.

This study had limitations. First, as a retrospective 
study, it did not assess the real-world clinical integration 
or the real-time impact on patient management. Addition-
ally, the retrospective nature of the study may introduce 
selection bias. To balance this bias, all consecutive CT 
scans on a given period have been included. Second, it 
was a single-center study, limiting the generalizabil-
ity of the results to other centers and medical practices. 
Moreover, the study focused exclusively on patients with 
oncological profiles, with specific characteristics related 
to age, treatment approaches, and follow-up. This popula-
tion is probably over-exposed to osteoporosis and VCF, 



La radiologia medica	

thus increasing these findings in the final cohort. Finally, 
although reported, we did not make use of the osteoporo-
sis parameters (mean HU) provided by the application, as 
the primary aim of the study was to assess the diagnostic 
performance for VCF detection and the unreported rate 
of VCF-positive patients in routine oncological clinical 
practice within the oncology department.

Conclusion

In summary, this study demonstrates the potential clinical 
benefit of the DL-based application integration into a clini-
cal workflow in order to detect opportunistic VCFs on regu-
lar CT scans. Importantly, the application proved effective in 
detecting previously overlooked patients with severe (grade 
3) VCFs in a tertiary cancer center, thereby facilitating their 
redirection to appropriate treatment pathways and offering 
the potential for improved clinical outcomes. The system can 
complement radiologists’ assessments, improving the identi-
fication of patients with VCFs for inclusion in prophylactic 
treatment pathways and reducing non-reported rates, there-
fore contributing to enhancing patient long-term outcomes.
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