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Abstract
Summary  Low bone mass (LBM), which can lead to osteoporosis, is often undetected and increases the risk of bone fractures. 
This study presents OsPenScreen, a deep learning model that can identify low bone mass early using standard chest X-rays 
(CXRs). By detecting low bone mass sooner, this tool helps prevent the disease progression to osteoporosis, potentially 
reducing health complications and treatment costs. OsPenScreen was validated across four external datasets and consist-
ently performed well, showing its potential as a reliable, cost-effective solution for opportunistic early screening in CXR.
Purpose  Low bone mass, an often-undiagnosed precursor to osteoporosis, significantly increases fracture risk and poses a 
substantial public health challenge. This study aimed to develop and validate a deep learning model, OsPenScreen, for the 
opportunistic detection of low bone mass using routine chest X-rays (CXRs).
Methods  OsPenScreen, a convolutional neural network-based model, was trained on 77,812 paired CXR and dual-energy 
X-ray absorptiometry (DXA) datasets using knowledge distillation techniques. Validation was performed across four inde-
pendent datasets (5,935 images) from diverse institutions. The model’s performance was assessed using area under the curve 
(AUC), accuracy, sensitivity, and specificity. Grad-CAM visualizations were employed to analyze model decision-making. 
Osteoporosis cases were pre-excluded by a separate model; OsPenScreen was applied only to non-osteoporotic cases.
Results  Our model achieved an AUC of 0.95 (95% CI: 0.94–0.97) on the external test datasets, with consistent performance 
across sex and age subgroups. The model demonstrated superior accuracy in detecting cases with significantly reduced bone 
mass and showed focused attention on weight-bearing bones in normal cases versus non-weight-bearing bones in low bone 
mass cases.
Conclusion  OsPenScreen represents a scalable and effective tool for opportunistic low bone mass screening, utilizing routine 
CXRs without additional healthcare burdens. Its robust performance across diverse datasets highlights its potential to enhance 
early detection, preventing progression to osteoporosis and reducing associated healthcare costs.
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Abbreviations
AUC​	� Area under the receiver operating curve
AMC	� Asan Medical Center
BMD	� Bone mineral density
LBM	� Low bone mass
CXRs	� Chest X-rays
DL	� Deep learning
DXA	� Dual-energy X-ray absorptiometry
Grad-CAM	� Gradient-weighted class activation mapping
HSPC	� Health Screening and Promotion Center
IRB	� Institutional Review Board
NIH	� National Institutes of Health
ROC	� Receiver operating characteristic curve
SCH	� Seoul Chuck Hospital
VHSMC	� Veterans’ Health System Medical Center
WHO	� World Health Organization

Introduction

Osteoporosis affects over 200 million people globally and 
is the leading cause of fragility fractures, which are associ-
ated with chronic pain, disability, and a threefold increase 
in mortality [1]. Although osteoporosis presents a higher 
fracture risk than low bone mass, most fractures occur in 
subjects with low bone mass due to its higher prevalence [2, 
3]. Advanced low bone mass has a high likelihood of pro-
gressing to osteoporosis within a year [4], underscoring the 
importance of early detection crucial for fracture prevention 
and improved patient outcomes.

Dual-energy X-ray absorptiometry (DXA) remains the 
gold standard for measuring bone mineral density (BMD) 
[5], but its limited accessibility, high cost, and requirement 
for trained operators result in low screening rates, particularly 
in high-risk populations [6]. Chest X-rays (CXRs) present a 
more accessible alternative for opportunistic screening with 
recent advances in deep learning (DL) and convolutional neu-
ral networks enhancing their diagnostic potential in medical 
imaging [7]. Previously, we developed OsPorScreen, a DL 
model that effectively identified individuals with a high prob-
ability of osteoporosis using CXRs for opportunistic screen-
ing [8]. However, the model had a clinical limitation in that it 
could not classify low bone mass, thus missing an early stage 
crucial for effective disease management.

To overcome this limitation, we developed OsPenScreen, 
a novel DL model tailored to detect low bone mass using 
CXRs. We validated the model across multicenter cohorts, 
examining its performance across varying degrees of low 
bone mass (mild, moderate, and advanced). In this study, 
“low bone mass” is used to describe subclinical reductions 
in BMD (T-score between − 1.0 and − 2.5) that precede 
osteoporosis.

Material and methods

This retrospective study was conducted in accordance with the 
principles of the Declaration of Helsinki and current scientific 
guidelines. The research protocol for the Asan Medical Center 
(AMC) data was approved by the Institutional Review Board 
(IRB) of the University of Ulsan College of Medicine, Asan 
Medical Center (IRB No. 2019–1226). External test datasets 
from Seoul Chuck Hospital (SCH), Public IRB (IRB No. 
2024–0256-001), Veterans’ Health System Medical Center 
(VHSMC) (IRB No. 2022–10-003–001) were approved by 
their respective review boards. Informed consent was waived 
for all datasets due to the retrospective nature of the study and 
the use of de-identified patient data.

Acquisition of datasets

Asan medical center

The dataset of AMC consists of health examination data 
from men and women aged ≥ 50 years or older who visited 
the Health Screening and Promotion Center (HSPC) of AMC 
in Seoul, South Korea, between January 2012 and February 
2019. This dataset includes CXRs with normal findings paired 
with same-day DXA scans. Areal BMD measurements (g/cm2) 
were obtained using DXA (Lunar Prodigy, software version 
9.30.044; GE Healthcare, Madison).

The external test dataset was compiled from patients who 
received care at AMC, across various departments—includ-
ing outpatient clinics, inpatient wards, emergency depart-
ments, and the HSPC —between June 2006 and July 2019. 
This dataset is part of the Asan osteoporosis cohort, which 
includes consecutive ambulatory men and postmenopausal 
women who visited the AMC osteoporosis clinic from 2010 
to 2017. Inclusion criteria were individuals aged ≥ 50 years 
who underwent both CXR and DXA within a three-month 
interval, with posteroanterior CXRs showing normal find-
ings; for images from the HSPC, only those taken before 
2012 were included. Exclusion criteria comprised patients 
with implanted medical devices (e.g., electrocardiographic 
lines, pacemakers, implantable defibrillators), those who 
had undergone surgeries like internal fixation or bone 
cement augmentation, individuals with abnormal CXR 
findings (such as pneumonia, postoperative lung lesions, 
or any abnormalities reported by radiologists), and images 
of low quality.

Seoul chuck hospital (SCH)

Between August 2022 and July 2023, we collected a SCH 
dataset of 8,392 paired CXRs and DXA results from 
individuals aged 40 to 87  years who underwent both 
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examinations on the same day. The CXRs were acquired 
using the DK radiography machine (DR system, DK Medi-
cal Solutions, Korea), and the DXA scans were performed 
with the Osteosys Dexxum T (OsteoSys, Korea). Notably, 
no exclusion criteria were applied to this dataset, ensuring 
a broad representation of the patient population.

Veterans’ health system medical center (VHSMC)

From October 2012 to October 2022, we collected a 
VHSMC dataset of 2,433 paired CXRs and DXA results 
from individuals aged 50 to 98 years. These participants 
underwent both CXR and DXA examinations within a 
180-day interval. The CXRs were acquired using various 
radiography machines, and the DXA scans were performed 
using the GE Lunar Prodigy Advance system. In cases 
where multiple CXRs were available for a single individ-
ual, we selected the posteroanterior CXRs taken on the 
date closest to the DXA examination.

ChestX‑ray8 of national institutes of health (NIH)

The publicly available ChestX-ray8 dataset, provided by 
the National Institutes of Health, comprises 108,948 CXR 
images from 30,805 patients and was used in this study 
[9]. This dataset includes multiple labels for various tho-
racic diseases, as well as normal cases. For this study, 
we specifically filtered cases labeled as normal to ensure 
the dataset was representative of our target population,we 
further refined the selection by including only individuals 
aged between 50 and 100 years. This carefully selected 
subset was subsequently incorporated into the learning 
pipeline using semi-supervised learning, enhancing the 
model's ability to generalize across diverse CXR cases.

CheXpert of stanford health care

The publicly available CheXpert dataset, developed by 
Stanford Health Care, contains 224,316 chest X-ray (CXR) 
images from 65,240 patients, was utilized in this study 
[10]. This dataset provides detailed annotations for a wide 
range of thoracic abnormalities, including labels for normal 
cases. For this study, we focused on cases labeled as normal 
and further refined the selection to align with our target 
population. Specifically, we selected images from indi-
viduals aged between 50 and 100 years to create a tailored 
subset of the CheXpert dataset. This refined dataset was 
incorporated into the model training pipeline to improve its 
generalizability and performance in distinguishing between 
Normal and Low bone mass cases on CXR.

Gradient health

GH (Gradient Health) External dataset, a provider of global 
medical imaging data, maintains a vast collection of 5 mil-
lion de-identified medical images, including chest radio-
graphs paired with T-scores from DXA scans. Using their 
subscription-based service, we retrieved chest radiographs 
taken within six months before or after DXA examina-
tions, with the data primarily originating from North and 
Latin America. This dataset comprises 987 paired CXR 
and DXA records obtained through a paid service, though 
details regarding the specific DXA machines used were 
unavailable.

Construction of training and validation 
datasets

Training dataset from AMC with DXA‑paired CXRs

The OsPenScreen model was initially trained using CXRs 
paired with DXA scans obtained from the AMC dataset. 
The dataset was split into 70% for training, 10% for tun-
ing, and 20% for internal testing. Poor-quality and misclas-
sified CXR images (n = 5,963) as well as images paired 
with osteoporosis cases (T-score ≤  − 2.5, n = 2,732) were 
excluded from training. This curated dataset, consisting 
exclusively of normal and low bone mass cases with paired 
DXA labels, served as the basis for supervised training of 
the initial model.

Training dataset from NIH/CheXpert datasets 
with proxy labels

To expand the training dataset and address the limitations of 
single-institution data, we incorporated two publicly avail-
able chest radiograph datasets: NIH ChestX-ray8 and Stan-
ford CheXpert. These datasets contain CXR images with 
a wide range of medical conditions but lack DXA-BMD 
measurements. Only images labeled as normal were consid-
ered. A total of 96,763 CXR images were initially obtained. 
Among these, 43,396 images were excluded due to patient 
age < 50 or ≥ 100 years.

Since the public datasets did not include DXA-based 
labels, we compensated for this limitation by training a 
model on the AMC dataset, which contained paired DXA 
and CXR data. This model served as a pre-trained model 
and was used to infer proxy labels for the NIH and CheX-
pert datasets. During inference, the model generated a 
binary classification (normal vs. Low bone mass) along 
with a corresponding confidence score for each image. 
Based on the AMC training class distribution, we set con-
fidence thresholds of ≥ 0.99 for normal and ≥ 0.75 for low 
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bone mass, and applied these thresholds to the NIH and 
CheXpert datasets. An additional 37,102 cases that did not 
meet these thresholds were excluded. The remaining 16,265 
high-confidence, proxy-labeled cases were combined with 
the AMC dataset to construct an expanded training set. This 
semi-supervised learning strategy improved data diversity 
and contributed to enhanced model generalizability across 
external cohorts. Details of the threshold experiments for 
proxy-labeling of the low bone mass class are provided 
in Supplementary Material (Table S3). Specifically, we 
conducted experiments across multiple thresholds and 
selected the operating point that yielded the best overall 
performance. The corresponding optimal thresholds were 
then applied for proxy-labeling, and the resulting data were 
incorporated into the training set.

Validation datasets

Model performance was evaluated using one internal test 
set from AMC and three external datasets from independ-
ent institutions, as illustrated in Fig. 1. The AMC inter-
nal test set included 1,326 CXRs, balanced by sex and 
class (normal vs. low bone mass), with osteoporosis cases 
(n = 663) excluded. Initially, 749 DXA-labeled cases were 
selected from the AMC osteoporosis cohort, balanced 
across the three BMD categories. Subsequently, 318 oste-
oporosis cases were removed, and 340 additional normal 
cases were randomly selected from the AMC HSPC dataset 
to complete the internal validation set.

For external validation, the SCH dataset comprised 3,133 
CXRs after excluding patients aged ≤ 50 years (n = 5,054) 
and osteoporosis cases (n = 205). The VHSMC dataset 
included 705 images after excluding lateral views and 
233 osteoporosis cases; although T-score information was 
unavailable, institutional DXA-based diagnostic labels for 
normal, low bone mass, and osteoporosis were provided, 
making it suitable for overall validation. The GH dataset 
consisted of 987 paired CXR–DXA records obtained within 
six months before or after DXA examinations, primarily 
from North and Latin America, and similarly contained 
institutional DXA-based diagnostic labels for the three BMD 
categories, but details on the specific DXA manufactures 
used were not available.

DXA measurement and LBM classification

BMD was measured at three standard anatomical sites: the 
lumbar spine, femoral neck, and total hip. According to 
World Health Organization (WHO) criteria, which are also 
adopted as the clinical standard in the Korean osteoporosis 
guidelines [28], participants were classified based on the 
lowest T-score among these sites. Normal BMD was defined 
as a T-score of −1.00 or higher. To enable stratified analysis 

of low bone mass, we further divided into three subcatego-
ries: mild (T-score between −1.01 and −1.49), moderate 
(−1.50 to −1.99), and advanced low bone mass (−2.00 to 
−2.49) [4].

BMD values were primarily obtained using GE Lunar 
DXA systems for the AMC internal/external and VHSMC 
external datasets. Only the SCH external test set used an 
Osteosys DXA device, which has demonstrated high con-
cordance with GE and Hologic systems in prior validation 
studies [11].

Model development and activation map

For the OsPenScreen model, grayscale truncation [12] was 
specifically applied before inputting the DICOM images into 
the model. This preprocessing technique was designed to 
suppress extreme intensity values and enhance the contrast 
of diagnostically relevant regions. Given a grayscale image 
I (x, y) with spatial dimensions H × W, we first defined a 
central rectangular region R that spans 50% of the image 
height and width:

We then calculated the minimum and maximum inten-
sity values within this region, denoted as Vmin and Vmax 
respectively:

Using these bounds, we clipped all pixel values in the full 
image I to the range [ Vmin, Vmax ], and then rescaled the result-
ing image linearly to the 0–255 range for model input. This 
process effectively suppresses outlier intensity values while 
preserving clinically meaningful contrast in the central ana-
tomical region. The preprocessed images were subsequently 
resized to 512 × 512 pixels. A ConvNeXt-small architecture 
pretrained on ImageNet was then used for model training 
through knowledge distillation. The model was designed to 
estimate a confidence score to classify the input images as 
either low bone mass or normal.

The model, initially trained on the AMC training data-
set, was further refined through semi-supervised learning 
[13] by performing inference on public datasets such as 
ChestX-ray8 dataset and CheXpert dataset. For the inferred 
data that exceeded the confidence score threshold applied 
to each class (0.99 or higher for the normal class and 0.75 
or higher for the low bone mass class), proxy labels were 
assigned. These proxy-labeled data were then added to the 
original AMC training data to form a new dataset, which was 
used for additional training. This approach allowed for the 
supplementation of previously limited data and enabled the 
model to learn from a broader range of data distributions, 
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thereby enhancing its robustness when applied to various 
external datasets.

The OsPenScreen model was further trained using the 
knowledge distillation method, employing both cross-
entropy loss and Kullback–Leibler (KL)-divergence loss, 
with a batch size of 64 over 100 epochs. To enhance model 
robustness, augmentation techniques were categorized 
into weak augmentation and strong augmentation. Weak 

augmentation, including horizontal flip,and normalize, pre-
served essential image characteristics. Strong augmenta-
tions, such as Blur, MotionBlur, MedianBlur, ShiftScaleRo-
tate, GridDistortion, ElasticTransform, OpticalDistortion, 
RandomGamma, and GridDropout, introduced substantial 
variations to diversify the training data. To understand the 
model's decision-making and identify critical regions for low 
bone mass screening in CXRs, this study applied Grad-CAM 

Fig. 1   Construction of training and validation datasets. A Training datasets; B validation datasets
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[18], highlighting key areas for low bone mass detection with 
a red overlay. For further details, refer to Supplementary 
Material (Fig. S1).

Performance evaluation and statistical analysis

To evaluate the screening performance across the four test 
datasets, accuracy, sensitivity, specificity, and AUC were 
calculated, along with their corresponding 95% confidence 
intervals (CIs). The confusion matrix was presented as a 
2 × 2 table, detailing the counts of true positives, false posi-
tives, false negatives, and true negatives. The 95% CIs for 
AUC were estimated using bootstrapping (n = 1,000) with 
the roc_auc_score from scikit-learn [14], and the CIs for 
accuracy, sensitivity, and specificity were computed using 
the binconf function from the Hmisc R package, assum-
ing a binomial distribution. A 0.5 classification cut-off was 
applied across all datasets.

Results

Dataset characteristics

A total of 68,811 CXR images from the AMC internal train-
ing dataset, ChestX-ray8 dataset, and CheXpert datasets 
were used for model training, with 5,935 CXR images from 
one internal and three external datasets included for valida-
tion. The training dataset demonstrated a balanced sex distri-
bution, whereas significant differences were observed in the 
AMC internal test dataset, AMC external test dataset, and 
VHSMC test dataset (p < 0.001), while the SCH test dataset 
showed no significant difference (p = 0.075). The training 
dataset had a mean age of 53.5 ± 7.0 years for female and 
54.0 ± 7.2 years for male which was comparable to the AMC 
internal test, AMC external test, and SCH test dataset, while 
the VHSMC test dataset showed a significantly higher mean 
age (p < 0.001).

Regarding the distribution of low bone mass, the training 
dataset showed a prevalence of 52.8% among females and 
25.7% among males. For females, the prevalence was sig-
nificantly different from the AMC internal test dataset, AMC 
external test dataset, and SCH test dataset, and significantly 
higher in the VHSMC test dataset (p < 0.05). For males, 
the prevalence was comparable only to the SCH test data-
set (25.3%, p = 0.737), but significantly higher in the AMC 
internal test dataset, AMC external test dataset, and VHSMC 
test dataset (p < 0.001). The Gradient Health (GH) external 
test dataset comprised 787 CXR–DXA pairs from North and 
Latin America, with an older patient population and higher 
LBMD prevalence than other cohorts. The distribution of 
low bone mass subcategories in the training dataset and four 
test datasets showed no statistically significant differences, 

and no single subcategory was found to be dominant for 
either females or males (p > 0.05). Detailed information is 
described in Table 1.

Performances of the OsPenScreen models

The model demonstrated consistently high performance 
across all datasets, with AUC values above 0.85. The vali-
dation of AMC external test dataset yielded the best results, 
achieving an AUC of 0.95 (95% CI: 0.94–0.97), a sensitivity 
of 0.97, and an accuracy of 0.84, underscoring the mod-
el’s strong ability to detect low bone mass. In the SCH test 
dataset, the model maintained robust performance with an 
AUC of 0.90 (95% CI: 0.89–0.91) and a sensitivity of 0.83. 
By comparison, the VHSMC test dataset showed a slightly 
lower AUC of 0.85 and a specificity of 0.70, indicating some 
variability across datasets. The GH external dataset demon-
strated the highest PPV (0.91) and specificity (0.84) among 
all datasets. Nevertheless, accuracy remained consistently 
high, ranging from 0.78 to 0.84 across all datasets. Detailed 
results are provided in Table 2.

To further address class imbalance and the varying preva-
lence of low bone mass across the test sets, we additionally 
analyzed the model’s performance using Precision-Recall 
(PR) Curves and corresponding Average Precision (AP) 
scores. The PR analysis confirmed the model’s robust per-
formance, with AP scores of 0.91 for AMC internal, 0.95 for 
AMC external, 0.85 for SCH external, 0.90 for VHSMC, and 
0.92 for GH test datasets (Supplementary Fig. S3).

Models trained with pseudo-labeled public data at dif-
ferent confidence thresholds for the low bone mass class 
(0.65, 0.75, 0.85) were compared to a model trained without 
public data. Inclusion of pseudo-labeled data improved per-
formance across all thresholds, with the highest AUC and 
sensitivity observed at the 0.75 threshold (GH AUC: 0.85; 
AMC internal AUC: 0.86) (Supplementary Table S3).

Subgroup analysis in the OsPenScreen model

The model demonstrated improved accuracy with increas-
ing low bone mass severity across both the AMC external 
and SCH test datasets. The VHSMC and GH test dataset, 
however, was excluded from this analysis as it provides 
only categorical labels (normal, low bone mass, osteopo-
rosis) without T-score values, precluding subgroup clas-
sification by severity. Specifically, accuracy for mild low 
bone mass was lower and more variable, particularly in the 
SCH test dataset, but significantly improved for moder-
ate and advanced stages, where near-perfect accuracy was 
observed (Fig. 2). This trend was consistent across three 
datasets—AMC internal, AMC external, and SCH test 
dataset -where accuracy improved progressively with low 
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bone mass severity, showing lower accuracy and higher 
variability in mild cases, and near-perfect accuracy with 
minimal variability in moderate and advanced cases.

In the subgroup analysis by age, the OsPenScreen model 
demonstrated consistently robust performance across all 
datasets. AUC values remained high across most age groups, 
particularly in the AMC external and SCH test datasets, 
where they reached 0.97 and 0.91, respectively (Table 3).

In the sex subgroup analysis, the model demonstrated 
slight variations in performance across males and females 
in all test datasets. AUC values were higher for females, with 
the highest AUC of 0.96 observed in females from the AMC 
external test dataset, compared to 0.92 for males. Sensitivity 
was also consistently higher in females, reaching 0.97 in the 
VHSMC external test dataset, whereas males had a lower 
sensitivity of 0.76 in the same dataset. In contrast, specificity 

Table 1   Characteristics of training dataset and internal and external validation datasets

AMC Asan Medical Center, BMD bone mineral density, CXR chest X-ray, DXA dual-energy X-ray absorptiometry, SD standard deviation, SCH 
Seoul Chuck Hospital, SD standard deviation, VHSMC Veterans’ Health System Medical Center, GH Gradient Health

AMC internal training 
(n = 46,048)

AMC internal tuning 
(n = 6498)

CheXpert and Chest-Xray8 
(n = 16,265)

AMC internal test 
(n = 1326)

Female 
(n = 24,281)

Male 
(n = 21,767)

Female 
(n = 3425)

Male 
(n = 3073)

Female 
(n = 6565)

Male 
(n = 9700)

Female 
(n = 1112)

Male 
(n = 214)

Age, years
(mean ± SD)

53.4 ± 6.9 57.1 ± 7.1 53.5 ± 7.0 57.3 ± 7.0 61.6 ± 8.9 62.5 ± 8.6 57.3 ± 6.1 57.9 ± 6.6

BMD categories
Normal, n (%) 12,294 

(50.6%)
16,387 

(75.3%)
1721 

(50.3%)
2319 

(75.5%)
2156 (32.8%) 6941 

(71.5%)
565 (50.8%) 109 (50.9%)

Low bone mass, n (%) 11,987 
(49.4%)

5380 
(24.7%)

1704 
(49.7%)

754 (24.5%) 4409 (67.2%) 2759 
(28.5%)

547 (49.2%) 105 (49.1%)

Mild 
(−1.0 < T-score < 1.5)

4634 (19.1%) 2486 
(11.4%)

681 (19.9%) 362 (11.8%) NA NA 153 (13.8%) 41 (19.2%)

Moderate 
(−1.5 ≤ T-score < 2.0)

4169 (17.2%) 1927 (8.9%) 590 (17.2%) 250 (8.1%) NA NA 218 (19.6%) 39 (18.2%)

Advanced 
(−2.0 ≤ T-score < 2.5)

3184 (13.1%) 967 (4.4%) 433 (12.6%) 142 (4.6%) NA NA 176 (15.8%) 25 (11.7%)

CXR manufacture GE healthcare GE healthcare Unknown GE healthcare
DXA manufacture GE lunar GE lunar Unknown GE lunar

AMC external test (n = 771) SCH external test 
(n = 3133)

VHSMC external test 
(n = 705)

Gradient Health external 
test (n = 787)

Female 
(n = 678)

Male 
(n = 93)

Female 
(n = 1703)

Male 
(n = 1430)

Female 
(n = 251)

Male 
(n = 454)

Female 
(n = 752)

Male (n = 35)

Age, years
(mean ± SD)

57.4 ± 6.1 60.0 ± 7.1 59.2 ± 7.2 59.1 ± 7.4 70.4 ± 7.4 74.3 ± 5.0 66.7 ± 8.9 70.2 ± 8.2

BMD categories
Normal, n (%) 348 (51.3%) 45 (48.4%) 867 (50.9%) 1068 

(74.7%)
47 (18.7%) 225 (49.6%) 229 (30.4%) 11 (31.4%)

Low bone mass, n (%) 330 (48.7%) 48 (51.6%) 836 (49.1%) 362 (25.3%) 204 (81.3%) 229 (50.4%) 523 (69.6%) 24 (68.6%)
Mild 

(−1.0 < T-score < 1.5)
30 (4.3%) 5 (5.3%) 317 (18.7%) 172 (12.0%) NA NA NA NA

Moderate 
(−1.5 ≤ T-score < 2.0)

121 (17.8%) 21 (22.6%) 285 (16.7%) 122 (8.5%) NA NA NA NA

Advanced 
(−2.0 ≤ T-score < 2.5)

179 (26.4%) 22 (23.7%) 234 (13.7%) 68 (4.8%) NA NA NA NA

CXR manufacture GE Healthcare (93.57%); 
Canon Inc. (4.96%); oth-
ers (1.47%)

DK Samsung (50.32%); GE 
healthcare (41.79%); DK 
(7.68%); others (0.21%)

Carestream (31.77%); 
Konica Minolta 
(23.00%); SIEMENS 
(16.90%); Samsung 
(14.99%); others 
(13.34%)

DXA manufacture GE lunar Osteosys GE lunar Unknown
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was higher in males across most test datasets, with males 
in the AMC internal test dataset achieving a specificity of 
0.93, compared to 0.72 for females. Accuracy was balanced 
between the sexes, with both showing robust performance, 
particularly in the AMC external test dataset, where accu-
racy for females reached 0.86 (Table 3).

Visualization of the model predictions for normal 
and low bone mass cases across four validations

In the Grad-CAM overlays applied to four independent test 
datasets, consistent patterns emerged across normal and low 
bone mass cases. In normal cases, the model consistently 
highlighted the thoracic and lumbar spine regions, reflecting 
a focus on weight-bearing bones. Conversely, in low bone 
mass cases, the model primarily highlighted the bilateral 
upper arms and clavicle regions, focusing on non-weight-
bearing areas. This differentiation in Grad-CAM visualiza-
tion underscores distinct regions associated with normal 
versus low bone mass characteristics (Fig. 3). To extend 
these findings, Supplementary Fig. S2 presents Grad-CAM 

overlays from five representative cases spanning the T-score 
continuum (from + 2.0 to –3.0). The visualizations reveal 
a gradual shift in model attention from weight-bearing 
regions, such as the thoracic and lumbar spine, toward non-
weight-bearing areas, including the clavicle and scapula, as 
bone mineral density declines.

Discussion

In this study, we developed and validated the OsPenScreen 
model, a DL-based approach utilizing CXRs for the early 
detection of low bone mass. The model demonstrated 
consistent performance across multiple external datasets, 
achieving an AUC over 0.85. These results highlight the 
potential of using CXRs for opportunistic low bone mass 
screening, allowing early detection and management with-
out the need for additional healthcare burden, addressing a 
significant population-level fracture risk.

The OsPenScreen model was trained on a diverse dataset 
of 68,811 CXRs from the AMC HSPC cohort in Korea and 

Table 2   Performance of the OsPenScreen model in the validation datasets

Internal dataset External dataset

AMC internal AMC external SCH external VHSMC external GH external

TP, n (%) 592 (44.6%) 372 (48.2%) 989 (27.4%) 371 (52.6%) 409 (52.0%)
TN, n (%) 501 (37.8%) 277 (35.9%) 1582 (53.9%) 174 (24.7%) 201 (25.5%)
FP, n (%) 162 (12.2%) 111 (14.4%) 351 (11.3%) 98 (13.9%) 39 (5.0%)
FN, n (%) 71 (5.4%) 11 (1.4%) 211 (7.3%) 62 (8.8%) 138 (17.5%)
AUC (95% CI) 0.91 (0.89–0.93) 0.95 (0.94–0.97) 0.90 (0.89–0.91) 0.85 (0.82–0.87) 0.85 (0.82–0.88)
Sensitivity (95% CI) 0.92 (0.90–0.94) 0.97 (0.95–0.99) 0.83 (0.81–0.85) 0.86 (0.82–0.89) 0.75 (0.71–0.79)
Specificity (95% CI) 0.72 (0.68–0.76) 0.71 (0.67–0.76) 0.81 (0.80–0.84) 0.70 (0.59–0.70) 0.84 (0.79–0.89)
PPV (95% CI) 0.77 (0.73–0.80) 0.77 (0.73–0.81) 0.74 (0.71–0.76) 0.82 (0.76–0.83) 0.91 (0.89–0.94)
NPV (95% CI) 0.90 (0.87–0.93) 0.96 (0.94–0.98) 0.88 (0.87–0.90) 0.75 (0.68–0.79) 0.59 (0.54–0.65)
Accuracy (95% CI) 0.82 (0.80–0.84) 0.84 (0.82–0.87) 0.82 (0.81–0.83) 0.80 (0.74–0.80) 0.78 (0.75–0.80)
F1 score (95% CI) 0.84 (0.82–0.86) 0.86 (0.83–0.88) 0.78 (0.76–0.80) 0.84 (0.80–0.85) 0.82 (0.80–0.85)

Fig. 2   Accuracies across subgroups. A AMC internal test dataset, B AMC external test dataset, and C SCH external test dataset
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Fig. 3   Grad-CAM images for 
normal and low bone mass 
cases across five datasets. A 
AMC internal test dataset, B 
AMC external test dataset, C 
SCH test dataset, D VHSMC 
test dataset, and E Gradient 
Health test dataset. (Left, nor-
mal cases; Right, low bone mass 
cases.) Grad-CAM highlights 
the regions of the image that the 
model considers most important 
for its decision-making process, 
with warmer colors (e.g., red) 
indicating areas of higher atten-
tion or focus by the model
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global datasets from NIH and Stanford Health Care, provid-
ing extensive representation of population and medical con-
ditions, and was validated across four distinct datasets with 
varied cohort characteristics. While the model showed con-
sistently strong performance overall, a decline was observed 
in the VHSMC test dataset. The most distinguishing feature 
of the VHSMC test dataset, compared to the other datasets, 
is that 92% of the individuals are over 65 years of age, which 
can be classified as elderly [15]. Aging induces widespread 
anatomical changes, such as costochondral calcification of 
the ribs, deformation of vertebral bodies, calcification of 
the tracheobronchial cartilage, and sarcopenia, which are 
visible on CXRs and present challenges to AI accuracy [16]. 
Similar patterns were observed in the VHSMC test dataset, 
where performance particularly declined in cases involving 
implantable devices or comorbidities associated with aging. 
Nevertheless, the model achieved an AUC of 0.85 in this 
dataset, which exceeds the threshold for clinical applica-
bility according to the Standards for Reporting Diagnostic 
Accuracy Studies guidelines [17], indicating its suitability 
for clinical use despite the challenges presented by an aging 
population. In the sex-specific analysis, sensitivity was con-
sistently higher in females across all datasets compared to 
males. This discrepancy may be attributed to the consist-
ently higher prevalence of low bone mass in females across 
training datasets, leading to greater model exposure to low 
bone mass patterns in females. Consequently, this imbal-
ance in training data may have enhanced the model’s abil-
ity to recognize low bone mass-related features in females, 
resulting in higher sensitivity. Additionally, model accuracy 
improved as low bone mass severity increased, with higher 
accuracy in the moderate and advanced subgroups compared 
to mild cases. Margaret L. et al. reported that progression 
to osteoporosis takes 17.3 years for mild low bone mass 
cases, 4.7 years for moderate, and 1.1 years for advanced, 
highlighting that frequent DXA scans may not be necessary 
for mild low bone mass cases [4]. Given that most of our 
model’s false negatives are concentrated in the mild low 
bone mass group around T-scores of −1, and the model’s 
accuracy improves significantly as the severity of low bone 
mass increases, our model could offer valuable clinical util-
ity in guiding follow-up intervals for DXA testing, particu-
larly when used opportunistically with CXRs taken for other 
medical reasons.

Another distinctive feature of our study is the higher per-
formance observed in the AMC external test dataset com-
pared to the AMC internal test dataset, despite the latter 
sharing the same configuration as the training dataset. This 
superior performance in the AMC external test dataset likely 
stems from differences in data source, clinical characteris-
tics of participants, labeling standards, and data distribution. 
The AMC internal test dataset had a higher proportion of 
mild low bone mass cases (14.6%) compared to the AMC 

external test dataset (4.5%), while advanced low bone mass 
cases were more prevalent in the AMC external test data-
set (26.1%) than in the AMC internal test dataset (15.2%). 
This discrepancy can be attributed to the fact that the AMC 
internal test dataset primarily consists of data collected from 
a health screening center, leading to a higher proportion of 
mild low bone mass cases, whereas the external dataset com-
prises data labeled in clinical settings, such as outpatient 
clinics, inpatient wards, and emergency departments, result-
ing in a higher prevalence of advanced low bone mass cases. 
Given that our model exhibits superior differentiation for 
advanced low bone mass compared to mild low bone mass, 
this difference in data distribution likely contributes to the 
higher performance observed in the external dataset. Addi-
tionally, the high proportion of female participants in the 
AMC external dataset (87.9%), consistent with the slightly 
female-dominant composition of the training data, may have 
contributed to enhanced model consistency, given the higher 
prevalence of low bone mass among women. Finally, both 
datasets were collected from the same hospital, ensuring 
high image quality with consistent equipment and imaging 
protocols, which supported stable performance across both 
datasets and contributed to the observed strengths of the 
AMC external dataset.

In addition to these domestic evaluations, we incorpo-
rated the Gradient Health (GH) external dataset to assess 
the model’s applicability across ethnically and institutionally 
diverse populations. The GH dataset comprises CXR–DXA 
pairs collected from multiple institutions in the United 
States and Latin America. Despite substantial differences 
in demographic composition and clinical settings compared 
with Korean datasets, the model demonstrated comparable 
performance, achieving an AUC of 0.85. These findings 
suggest that OsPenScreen may maintain robust diagnostic 
accuracy across geographically and ethnically heterogeneous 
environments, supporting its potential for broader interna-
tional deployment in opportunistic low bone mass screening.

Our Grad-CAM visualizations across four test datasets 
that the model that the model consistently highlighted 
weight-bearing bones, particularly the thoracic and lumbar 
spine, in normal cases, while focusing on non-weight-bear-
ing bones, such as the clavicles and upper arms, in low bone 
mass cases. While DXA scans generally assess BMD in the 
hip and spine due to the high risk of fragility fractures in 
these areas, which greatly impacts mortality, the clavicle and 
other non-weight-bearing bones are not typically included 
in routine BMD assessments [18]. However, studies sug-
gest that generalized bone loss from aging may reduce BMD 
in regions like the clavicle and upper arms [19]. Although 
bone loss occurs systemically, weight-bearing status sig-
nificantly influences BMD, often resulting in higher den-
sity in bones that bear weight [20]. Accordingly, in normal 
cases, the model may focus on weight-bearing bones like the 



	 Archives of Osteoporosis          (2025) 20:131   131   Page 12 of 14

thoracic, and lumbar spine. Conversely, in low bone mass 
cases, non-weight-bearing bones, such as the clavicle and 
scapula, might present early signs of bone density reduc-
tion, potentially drawing the model’s focus to these regions. 
These interpretations are exploratory in nature and were not 
supported by standardized anatomical labeling or radiologic 
validation, which will be addressed in future work.

As the global population continues to age, the prevalence 
of low bone mass is rising, especially among older adults. 
Low bone mass and osteoporosis are more widespread than 
many other diseases that receive greater public attention. For 
example, while the lifetime risk of breast cancer in white 
women is one in nine, the risk of experiencing a hip frac-
ture is one in six [21]. Among women over 45, osteoporosis 
results in more hospitalizations than major conditions like 
diabetes, heart attacks, and breast cancer [22]. In Europe, 
osteoporosis-related disability surpasses that of most can-
cers (except lung cancer) and rivals or exceeds the burden 
of chronic diseases like rheumatoid arthritis, asthma, and 
heart disease [23]. Despite these realities, low bone mass 
remains largely under-recognized. A survey by the Interna-
tional Osteoporosis Foundation (IOF) across 11 countries 
revealed that many postmenopausal women underestimate 
their personal risk, have poor communication with their 
healthcare providers about osteoporosis, and often lack 
access to diagnosis and treatment before their first fracture 
[24]. This contributes to the underdiagnosis and undertreat-
ment of low bone mass.

To address this, several studies have explored opportun-
istic screening using X-rays acquired for unrelated clinical 
indications. A recent systematic review reported a grow-
ing number of AI-based osteoporosis prediction models, 
driven by the availability of imaging data and computational 
advances. Among the 26 studies reviewed, structured clini-
cal data were the most common input (49%), followed by 
X-ray (27%), CT (15%), MRI (9%), DXA (5%), and QUS 
(2%). Models using clinical data generally outperformed 
image-only models, with AUCs ranging from 0.75 to 0.98. 
X-ray–only models, primarily based on lumbar spine and hip 
radiographs, showed moderate and consistent performance 
(AUC 0.78–0.83), likely due to anatomical correspondence 
with DXA sites [24].

Several CXR-only models have recently been developed, 
though most focus solely on binary classification of oste-
oporosis. Tsai et al. reported internal and external AUCs 
of 0.930 and 0.892, respectively [25]. Sato et al. achieved 
AUCs of 0.84 for osteoporosis, 0.70 for low bone mass, and 
0.89 for normal vs low BMD [26]. Asamoto et al. reported 
an accuracy of 79.7%, sensitivity of 77.1%, and specificity of 
80.4% [27]. While these models showed high performance 
for osteoporosis, their utility in detecting earlier-stage bone 
loss remains limited. The OsPenScreen model was devel-
oped to address this gap and achieved an AUC of 0.85 for 

low bone mass classification using a single CXR. The model 
can be integrated with existing osteoporosis classification 
models to enable extension of clinical screening from osteo-
porosis to low bone mass within a unified framework.

However, several limitations exist in this study. First, all 
DXA-labeled datasets used for model development and vali-
dation were collected exclusively from medical institutions 
in South Korea, limiting diversity in terms of ethnicity, body 
habitus, and imaging equipment. Such homogeneity may 
restrict the model’s generalizability, as anatomical structure 
and radiographic appearance can vary across populations 
and clinical settings. To partially address this limitation, we 
evaluated model performance using the GH external data-
set, which comprises CXR–DXA pairs collected from mul-
tiple institutions in the United States and Latin America. 
The model maintained strong performance in this multi-
ethnic external cohort (AUC = 0.85), suggesting potential 
robustness across demographically diverse populations. 
Nevertheless, further large-scale, prospective validation in 
international and multi-ethnic cohorts, along with methodo-
logical adaptations to account for domain shift, is warranted 
to more definitively establish the model’s generalizability. 
Second, we deliberately excluded patients with osteoporo-
sis (T-score ≤ −2.5) to focus specifically on low bone mass, 
which may not fully replicate real-world clinical conditions. 
Nonetheless, our previous research successfully developed 
and validated an osteoporosis classification model [8], and 
this study builds on that by successfully classifying low 
bone mass with high performance, enabling future expan-
sion to a three-class classification model: normal, low bone 
mass, osteoporosis. Specifically, this study presents only the 
second-stage model (OsPenScreen) of a two-stage classifi-
cation framework. The first-stage model identifies patients 
with osteoporosis, and OsPenScreen is applied subsequently 
to classify the remaining non-osteoporotic population into 
normal and low bone mass. Due to submission policies and 
peer review status, we were unable to include the first-stage 
model in this manuscript. However, integration into a uni-
fied three-class model is currently planned. Third, the model 
frequently misclassified cases near a T-score of −1.0, lead-
ing to confusion between normal and low bone mass, which 
could present challenges in clinical settings. However, given 
that mild low bone mass typically progresses to osteoporosis 
over a span of more than 15 years, these misclassifications 
are unlikely to have a significant clinical impact. Addressing 
this issue may require expanding the dataset and applying 
data preprocessing or normalization techniques to ensure 
consistent performance across institutions and improve accu-
racy in boundary regions. Fourth, due to the retrospective 
nature of this study, we were unable to assess the clinical 
consequences of a positive screen, including whether and 
how follow-up diagnostic or therapeutic actions would be 
initiated. Furthermore, we did not compare the model’s 
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utility against existing risk stratification methods, such as 
FRAX or age-based DXA referral strategies, nor did we 
evaluate clinical decision metrics such as decision curve 
analysis or net reclassification improvement. Future prospec-
tive studies are necessary to determine how this model can 
be integrated into routine clinical workflows and to establish 
its added value over existing screening tools.

In conclusion, the OsPenScreen model provides a promis-
ing solution for opportunistic low bone mass screening using 
CXRs. By identifying at-risk patients without additional 
radiation exposure or healthcare costs, this model has the 
potential to significantly reduce the incidence of osteoporo-
sis-related fractures, hospitalizations, and mortality, while 
providing a practical and scalable screening tool in routine 
clinical settings.
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