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Abstract
Purpose of Review Calcium and vitamin D supplementation is recommended for patients at high risk of fracture and/or for those
receiving pharmacological osteoporosis treatments. Probiotics are micro-organisms conferring a health benefit on the host when
administered in adequate amounts, likely by influencing gut microbiota (GM) composition and/or function. GM has been shown
to influence various determinants of bone health.
Recent Findings In animal models, probiotics prevent bone loss associated with estrogen deficiency, diabetes, or glucocorticoid
treatments, by modulating both bone resorption by osteoclasts and bone formation by osteoblast. In humans, they interfere with
25-hydroxyvitamin D levels, and calcium intake and absorption, and slightly decrease bone loss in elderly postmenopausal
women, in a quite similar magnitude as observed with calcium ± vitamin D supplements. A dietary source of probiotics is
fermented dairy products which can improve calcium balance, prevent secondary hyperparathyroidism, and attenuate age-related
increase of bone resorption and bone loss.
Summary Additional studies are required to determine whether probiotics or any other interventions targeting GM and its
metabolites may be adjuvant treatment to calcium and vitamin D or anti-osteoporotic drugs in the general management of
patients with bone fragility.

Keywords Bone turnover . Bone mineral density (BMD) . Osteoporosis . Gut microbiota . Nutrition . Dairy products . Intestinal
absorption

Introduction

Supplements of vitamin D ± calcium are recommended for
osteoporotic patients with low calcium intake or absorp-
tion, vitamin D insufficiency, or under pharmacological
treatment for osteoporosis [1]. Intakes of 800–1000 mg/
day of calcium and 800 IU of vitamin D are recommended
in the general management of patients with osteoporosis
[2•]. However, the efficacy of calcium and vitamin D treat-
ment on fracture risk reduction and hence its role in

osteoporosis treatment have been challenged over the last
decade. Calcium supplements associated with vitamin D
treatment, not calcium supplementation alone, are associ-
ated with a modest reduction in fracture risk. Adverse
events of calcium supplementation include mainly gastro-
intestinal symptoms and renal stones. Higher cardiovascu-
lar risk resulting from calcium supplementation at appro-
priate doses has not been confirmed by current evidence. In
addition, high loading dose of vitamin D may increase the
risk of fall and fracture and is no more recommended
[3–5].

Probiotics are live micro-organisms which, when given in
adequate amounts, meaning able to trigger the targeted effect,
confer a health benefit to the host [6••]. Their adequacy and
strength depend on food processing and matrix, strain speci-
ficity, and the targeted effect. Probiotics are available as yo-
gurt, milk-based foods, powder, capsules, or solutions like ice
cream and beer. The probiotic bacteria concentration for every
gram is approximately 10e7 to 10e8, with a serving size of
100 to 200 mg. Probiotics usually administered include
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Lactobacillus, Bifidobacterium, Escherichia, Enterococcus,
and Bacillus subtilis, as well as yeast like Saccharomyces.
Gut microbiota (GM) is more and more recognized as an
important determinant of bone health. Its composition chang-
es in relation with age [7, 8], sex [9], diet [10, 11], living
conditions, geography [8, 12], diseases requiring or not anti-
biotics treatment, and various drugs [13, 14]. Within dietary
intakes, pre- and probiotics are alsomajor determinants of GM
composition and function.

In this paper, the contribution of probiotics to bone health
and how they may interfere in osteoporosis management are
discussed.

Evidence for a Role of Gut Microbiota in Bone
Metabolism

Germ-Free Animals

Germ-free (GF) mice with a C57BL/6 genetic background,
characterized by the absence of GM, have higher bone mass
and better microstructure, with higher relative bone volume,
cortical area, and trabecular number. When these mice are
recolonized with a normal GM by 3 weeks of age, trabecular
BMD and cortical area are lower than in GF mice controls.
These differences in the bone phenotype are associated with
change in osteoclasts number and activity, since osteoclast
number is reduced while bone formation rate is maintained
in GF animals. In contrast, osteoclast precursors are increased
in GF mice recolonized with a normal GM. These data indi-
cate that in the absence of GM, bone mass and microstructure
are better in relation with a decreased bone resorption [15].
Normal GM also supports growth and bone development in
Balb/c and CB6F1 mice [16, 17], indicating that the mouse
genetic background influences how the GM affects bone
physiology.

Antibiotics

Low doses of antibiotics in early life change fecal
microbiome and the expression of genes implicated in
carbohydrate metabolism, with increased short-chain fatty
acid production and in hepatic lipid metabolism [18].
They have been used as growth promoters in poultry
and cattle industry [19]. Subtherapeutic doses of various
antibiotics, such as low dose penicillin from birth on or
from weaning, modulate BMD in female mice, suggesting
that intestinal microbiota alterations during a critical de-
velopment window exert lasting metabolic consequences
[20]. Tetracycline administration is also associated with
higher bone strength [21] and has been shown to prevent
OVX-induced bone loss [22].

Effects of Probiotics Administration on Bone

The effect on bone health of the direct administration of some
bacteria to the gastrointestinal tract, i.e., probiotics use, has
been tested in intervention studies in animal and human.

In animal models (Table 1)

OVX-induced bone loss in mice is prevented by various
probiotics including Lactobacillus reuteri [24], Lactobacillus
paracasei prevent OVX-mediated bone loss [27, 31], and
Lactobacillus helveticus fermented milk [30]. Bifidobacterium
longum partially prevent OVX-induced bone loss in rats, with-
out significantly affecting bone strength [32]. In these models,
the decrease of osteoclastic bone resorption with probiotics is
associated with a decrease of pro-inflammatory cytokines
(TNFα, IL-1β) and RANKL expression osteoclastic bone re-
sorption [24, 31]. Other models showed a benefit of probiotics
on inflammation observed in various conditions in bone. In a rat
model of collagen-induced arthritis, Lactobacillus casei de-
creases both TNF-alpha and IL6 production, and increases the
anti-inflammatory cytokine IL-10 [34]. In rodents, Bacillus
subtilis reduces periodontitis-stimulated bone loss [35].
Saccharomyces cerevisiae blunts alveolar bone loss, by de-
creasing the expression of IL-1β, TNFα, and IL-10 [36].

The effects of probiotics administration on bone were not
only observed in high-bone turnover conditions. Bacillus
longum combined with the prebiotic yacon flour increases
bone mineral content in rats [33]. Lactobacillus reuteri also
increases vertebral and femoral BMD in male mice, but not in
female mice [23], and prevents bone loss in type-1 diabetes
[25] and trabecular bone loss in glucocorticoid-treated mice
[26]. No benefi t of Lactobacil lus rhamnosus on
glucocorticoid-induced bone loss was observed in the same
study [26]. In diabetic mice and glucocorticoid-treated mice,
two models characterized by low bone turnover pattern with
low bone formation, Lactobacillus reuteri treatment prevented
the TNFα suppression of Wnt10b in bone which has been
implicated in the decrease of osteoblast activity and osteopo-
rosis activity in these two conditions [25, 26].

In humans

Oral supplementation with bile salt hydrolase-active
Lactobacillus reuteri increases circulating 25-hydroxyvitamin
D levels, without effect any on other fat-soluble vitamins, and
reduces cholesterol and the absorption of non-cholesterol ste-
rols in hypercholesterolemic adults [37]. Probiotics also im-
prove vitamin D levels in women with gestational diabetes
[38] or after bariatric surgery to a higher extent than those
observed in controls in parallel to weight loss [39, 40]. The
mechanisms of this effect on vitamin D remain unclear, and
may involve increased intestinal production of lactic acid,
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synthesis of 7-dehydrocholesterol, and higher expression and
activity of vitamin D receptors.

In a 6-month randomized controlled trial, healthy 1- to 6-
year old children receiving milk fortified with 5 × 10e8
Lactobacillus reuteri have a greater weight and height month-
ly gain [41].

Five randomized placebo-controlled trials have assessed
the effects of probiotics on bone metabolism in healthy
postmenopausal women (Table 2). Different amounts of
various strains were administered for 6 or 12 months.
Some decrease in bone resorption markers was observed
in 3 of the trials, and a benefit on BMD in 4 of them. In one
study, lactic acid bacteria were combined with isoflavone,
so that the specific contribution of probiotic on the benefit
on lumbar spine, femoral neck, and trochanter BMD (1.2 to
2.1% positive difference as compared with the placebo

group) is difficult to individualize [43]. The 3 other studies
used various probiotic strains (Lactobacillus reuteri,
Bacillus subtilis, or a combination of 3 Lactobacillus
strains) which prevented bone loss at the distal tibia, at
the lumbar spine, or at the hip, respectively [44, 45, 47].
The magnitude of the effect (≤ 1 percentage point differ-
ence versus placebo at 12 months) was however much
lower than those observed with anti-resorptive drugs used
in osteoporosis treatment, but of the same order compared
with calcium ± vitamin D (Fig. 1) [48]. None of these
studies was designed to test the effect on incident fractures.

In a double-blind placebo-controlled clinical trial including
417 elderly patients with an acute distal radius fracture,
Lactobacillus casei Shirota accelerated functional recovery,
with treatment outcomes of patients receiving probiotic at
month 4 at comparable levels with those of patients receiving

Table 1 Effects of probiotics on bone metabolism in mammalian experimental animals

Author Year Experimental
model

Probiotics Bone mass/density Biochemistry

McCabe [23] 2013 Healthy male and
female mice

Lactobacillus reuteri,
3×/week, 4 weeks

Increased femur and vertebral vBMD,
TbN and TrTh, in males but NOT
in females

Increased BFR, decreased gut TNFα
expression

Britton [24] 2014 OVX mice Lactobacillus reuteri,
3×/week, 4 weeks

Prevention of femur and vertebral
trabecular bone loss

Decreased RANKL expression and
osteoclast number. Decreased CD4+
T cells.

Zhang [25] 2016 T1D mice Lactobacillus reuteri,
3×/week., 4 weeks

Increased BMD, TbN and TbTh, incr.
OB surfaces (in controls too), incr.
MOI

Prevention of Wnt10b suppression in
bone

Schepper
[26]

2019 GC-treated mice Lactobacillus reuteri,
8 weeks

Lactobacillus rhamnosus
GG (LGG)

Prevention of femur and vertebral
trabecular bone loss with
Lactobacillus reuteri, but not with
Lactobacillus rhamnosus GG.

Lactobacillus reuteri maintained the
beneficial immunosuppressive
effects of GCs (GC-Tx suppression
of CD4+ T-lymphocytes)

Chiang [27] 2011 OVX mice Lactobacillus paracasei
and Lactobacillus
plantarum fermented soy
skim milk, 8 weeks

Prevention of femur trabecular bone
loss

Kimoto-Nira
[28]

2007 Senescent intact
mice

Heat killed Lactococcus
lactis

Decreased bone loss with heat killed
but not with living bacteria
fermented milk

Li [29] 2016 E2-depleted mice Lactobacillus rhamnosus or
VLS3 (8 strains),
4 weeks

Full prevention of vertebral BV/TV
decrease

Increase in BV/TV in sham animals
Narva [30] 2007 OVX rats Lactobacillus helveticus

fermented milk,
12 weeks

Prevention of bone loss Decreased bone turnover

Ohlsson [31] 2014 OVX mice Lactobacillus paracasei or
Lactobacillus paracasei
and Lactobacillus
plantarum 2 + 3 daily

Prevention of cortical bone loss Decreased cortical bone TNFα, IL-1β,
RANKL/OPG expression

Increased TGFβ expression in bone
marrow

Parvaneh
[32]

2015 OVX rats Bifidobacterium longum,
daily, 16 weeks

Attenuation of decreased BMD Increased osteocalcin, decreased CTX,
Increased BMP2 and Sparc bone

expression, increased fecal
bifidobacteria

Rodriguez
[33]

2012 Intact rats Bifidobacterium longum
and yacon flour (FOS)

Increased tibia Ca and Pi content

T1D, type 1 diabetes; MOI, cross-sectional moment of inertia; OVX, ovariectomized: GC, glucocorticoids
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placebo at month 6, suggesting that probiotic may accelerate
the fracture healing process [49].

Additional studies are required to confirm these data
and to optimize the choice of probiotic strains, usually
based for the clinical interventions reported above on
preclinical works in animal models, and the dose of these
strains to maximize the benefit on bone. It is likely that
the benefit on bone loss prevention may depend of time
since menopause and bone loss rate, as suggested in the
largest intervention study showing that the protective ef-
fect of Lactobacillus treatment was significant for partic-
ipants below, but not above the median time since men-
opause [46]. A major limitation is certainly the amount
of bacteria ingested. For instance, in adult monozygotic
tweens, 2 servings per day of fermented milk products
containing 5 different species of bacteria did not modify
the large intestine GM composition. In contrast, when
the same fermented milk products were given to gnoto-
biotic mice by gavage, there was a rapid change (within
24 h) in microbiome-encoded enzymes affecting carbohydrate
metabolism [50].

Fermented Dairy Products

In humans, fermented dairy products are the primary source of
probiotics [51•]. However, the specific effects of probiotics on
bone as compared with calcium, protein, phosphorus, or zinc,
as well as prebiotics as also provided by dairy products, are
difficult to specifically identify (Fig. 2). Furthermore, the
problem remains as to whether a sufficient amount of bacteria
is capable of reaching the distal part of the gastrointestinal
tract. Some data suggest that when yogurt is consumed on a
regular basis, it influences the composition and metabolism of
the human intestinal microbiota. Indeed, yogurt consumers
have lower level of Enterobacteriaceae and higher beta-
galactosidase activity in their GM. Beta-galactosidase activity
(and Bifidobacterium population) is positively correlated to
the quantity of fermented products ingested [52].

Some observational studies have examined the associations
between bone traits and fermented milk products. In an Irish
cohort of 4310 community dwelling older adults (> 60 years),
each unit increase in yogurt intake was associated with a 39%
lower risk in women, and 52% lower risk of osteoporosis in

Fig. 1 The effects of probiotics
(Lactobacillus paracasei DSM
13434, Lactobacillus plantarum
DSM 15312, and Lactobacillus
plantarum DSM 15313) on
changes in spine BMD relative to
placebo in the study of Jansson
et al. [46] (X), compared with the
effect of various agents tested in
other studies (O). Adapted from
Hauselmann and Rizzoli [48],
with permission from the
publisher. The size of the symbols
(O) is proportional to the number
of patients evaluated at the end of
the studies. Displacement of the
dot on the right and below the
equality line reflects the magni-
tude of treatment effects
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men [53]. The associations between yogurt and bone
were of higher magnitude than with milk intake. In a
cross-sectional and longitudinal study in older women
(65 years of age) from the Geneva Retirees cohort, yo-
gurt consumers had larger bone size at the distal tibia and
radius. Compared with non-consumers, cortical bone loss
at the radius was attenuated in these subjects, not in milk
or ripened cheeses consumers, independently of total cal-
cium, protein, and energy intakes [54]. In a 12-year fol-
low-up of the Framingham Offspring Study, dairy prod-
uct intake, including yogurts, was associated with lower
trochanter BMD loss, with a weak protective trend for
hip fracture, while there was no significant association
with other dairy groups [55]. In a long-term follow-up
of Swedish postmenopausal women, mortality and frac-
ture rate were lower in the women with a high compared
with low intake of cheese or fermented milk products.
For each serving, the rates of mortality and of hip frac-
ture were lower by 10–15% (P < 0.001) [56].

Intervention studies using fermented dairy products, forti-
fied or not, to promote bone health have been reviewed pre-
viously [51•]. They increase IGF-I and are effective to pro-
mote bonemineral accretion during growth, whereas in adults,
a dairy improves calcium balance and prevents secondary hy-
perparathyroidism, and age-related increases in bone resorp-
tion and bone loss.

Mechanisms of Interaction
Between Probiotics and Bone Health

GM Metabolites and Intestinal Wall Permeability

GM produces various metabolites, either from endoge-
nous compounds that are generated by the microorgan-
isms themselves and their hosts or from the fermentation
of undigested dietary components that reach the colon.
They are key regulators of the integrity of the gut epithe-
lium. These metabolites can also translocate from the gut
across a disrupted intestinal barrier to modulate multiple
inflammatory or metabolic processes [57]. A compro-
mised gut permeability may contribute to multiple chronic
diseases including osteoporosis by promoting the absorp-
tion of toxins and pathogens and decreasing nutrient bio-
availability. In sex hormone deficiency, intestinal wall per-
meability is increased in relation with a reduction in gap
junction protein transcripts [58]. The administration of
probiotics prevents this increase in gut permeability and
lowers the production of osteoclastogenic cytokines [29].
In addition, treatment with a non-absorbable mucus sup-
plement that enhances intestinal barrier function prevents
glucocorticoid-mediated osteoblast and osteocyte apopto-
sis in mice or Salmonella-induced bone loss in broiler
chickens [26, 59].

Fig. 2 Effects of fermented dairy
products on bone mass and
metabolism. Adapted from
Rizzoli and Biver [51•], with
permission from Springer Nature
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Interaction with Diet and Prebiotics

Prebiotics are non-digestible fiber saccharides that pass undi-
gested the upper part of the gastro-intestinal tract. By acting as
substrate for GM, they stimulate the growth and/or metabo-
lism of bacteria of the large bowel [60]. Various prebiotics
such as galactooligosaccharides, fructooligosaccharides, fiber
dextrin, inulin, and agarve fructans, at doses up to 20 g/day in
human, increase the number of bifidobacteria and lactobacilli,
and decrease that of coliforms. Prebiotics may also have direct
effects on the immune systemwithout being metabolized [61].
The fiber content of the diet markedly influences GM compo-
sition and metabolism [62], as does the ingestion of probiotics
[63], and may interfere in the pathogenesis of several chronic
diseases. For instance, an animal-based diet increases fat and
protein intakes and leads to inter-individual differences in GM
composition and microbial gene expression which may sup-
port the link between dietary fat, bile acids, and the outgrowth
of microorganisms capable of triggering inflammatory bowel
disease [10]. A Mediterranean diet, which is rich in fiber,
fermented dairy products, and polyphenols, is associated with
changes in the GM and various health benefits, including a
lower hip fracture risk [64–66].

Both experimental animal models and intervention studies
in human suggest that prebiotics influence calcium absorption
and retention, and bone mineral density (for review see [60]).
The evidence on BMD in human is however limited with few
studies of relatively low quality (low number of participants
and heterogeneity of the populations, not at risk of low calci-
um diet/absorption which may have minimize the effects)
[67–71].

Fermentation of prebiotic fibers by saccharolytic microbes
within the large intestine leads to a reduction in intestinal pH
and to the synthesis of short-chain fatty acids (SCFAs), includ-
ing acetate, propionate, valerate, isovalerate, butyrate, and
isobutyrate [60, 62, 72, 73]. These microbial metabolites have
emerged as key bone regulatory factors produced by the GM
and diffusing into the circulation [74]. In addition to their
influence on limiting intestinal wall permeability [75],
SCFAs may indeed not only inhibit osteoclast number and
activity, and thereby bone resorption, but also stimulate bone
formation by promoting Wnt10b signaling in bone marrow
stromal cells, leading to their proliferation and differentiation
into osteoblasts. Both mechanisms involve interactions of
SCFAs with Treg cells. These data indicate that probiotics,
prebiotics, and diet may influence bone remodeling. This is
supported by studies showing that SCFAs have direct effects
on bone metabolism and bone mass. For instance, when mice
are given SCFAs (acetate, propionate, or butyrate) in the
drinking water, there are an increase in trabecular bone vol-
ume, and a reduction in osteoclast number and biochemical
markers of bone resorption [76]. Furthermore, propionate or
butyrate prevents OVX-induced as well as inflammation-

dependent bone loss by inhibiting osteoclast differentiation
and bone resorption [76]. Butyrate increases osteoblast differ-
entiation [77] and bone formation, and is associated with
higher bone sialoprotein and osteoprotegerin production [78].

Interaction with the Immune System
and Inflammation

There is a close interplay between the immune and bone sys-
tems, and it is well established that chronic inflammatory con-
ditions are associated with osteoporosis [79]. GM can modu-
late the immune system development, since in GF animals,
hence lacking GM, mucosal and spleen immune systems are
immature [80]. The beneficial effect of probiotics on BMD
involves, as reported above for SCFAs, the contribution of
the immune system. In male mice, lymphocytes are critical
for the beneficial effects of L. reuteri on BMD and experi-
ments using L. reuteri supernatants demonstrated that the reg-
ulation of T-lymphocytes is mediated, at least partially, by
factors secreted by the probiotic strain [81]. OVX-induced
bone loss is not observed in OVX mice depleted of T cells
or lacking the T cell costimulatory molecule CD40 ligand
[82]. In OVX germ-free mice, there is no increase of
TNFα+ T cells in the bone marrow, contrary to what is ob-
served in control OVXmice [83]. Since TNFalpha is a central
cytokine involved in bone loss induced by estrogen deficien-
cy, GM may thus be necessary to present the antigens stimu-
lating TNFα production by T cells [84]. In addition, aging,
which is one of the main risk factor of osteoporosis, is asso-
ciated with modifications of the GM characterized by the in-
crease of the proportion of opportunistic pro-inflammatory
bacteria, a reduction in genes involved in pathways responsi-
ble for the production of SCFAs, and an increase in bacterial
genes involved in tryptophan metabolism pathways [85]. The
amount of gut pro-inflammatory bacteria is correlated with
plasma levels of cytokines such as IL-6 and IL-8, and there-
fore with systemic low-grade inflammation [86]. Multiple ad-
ditional factors (place of residence, frailty, comorbidities,
drugs, markers of inflammation, and nutritional status…), in-
cluding well-established risk factors of bone fragility, contrib-
ute to GM composition and its greater inter-individual varia-
tions in older people compared with younger adults [7, 8].

Interaction with Estrogens

The interaction of sex steroids with GM and its impact on
bone metabolism have been shown in hypogonadal mice.
Sex hormone deficiency (ovariectomy, OVX) is associated
with attenuated cortical and trabecular bone loss in germ-
free animals compared with controls, in relation with a lower
bone resorption [29]. In these models, estrogen deficiency is
associated with increased intestinal permeability, possibly due
to the reduction in gap junction protein transcripts [29, 58]. In
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addition, OVX increases GM diversity and number of
Bacteroidetes phylum, and reduces short-chain fatty acid pro-
duction [87]. Interestingly, probiotics supplementation pre-
vents sex steroid deficiency–associated bone loss in these
mice [29]. These data suggest that GM composition and its
metabolites may modulate postmenopausal bone loss. It re-
mains unknown how it may interfere with menopausal hor-
mone therapy or antiresorptive drugs used in the treatment of
postmenopausal osteoporosis.

Interaction with Vitamin D

Preclinical studies demonstrated that vitamin D receptor plays
a critical role in mucosal barrier homeostasis by preserving the
integrity of junction complexes of the colonic epithelium [88].
In addition, lack of VDR induces dysbiosis since cecal content
and stools of VDR knock-out animals are depleted in lactoba-
cillus and enriched in clostridium and bacteroides [89]. In
human, GM composition and circulating levels of lipopoly-
saccharide, an endotoxin from the outer membrane of most
Gram-negative bacteria known to promote low-grade inflam-
mation, vary according to vitamin D intake or circulating
calcifediol levels [90–92]. These data suggest that vitamin D
deficiency may compromise the mucosal barrier, leading to
increased intestinal permeability and potentially chronic low-
grade inflammation. The modulation of gut microbiome with
vitamin D3 supplementation seems to predominate in the up-
per gastrointestinal tract [93]. In addition, probiotic strains
such as Lactobacillus rhamnosus and Lactobacillus
plantarum increase VDR expression in both mouse and hu-
man intestinal epithelial cells [94]. A protection of
Salmonella-induced colitis by these probiotics is observed in
VDR+/+, but not in VDR−/− mice, indicating that vitamin D
pathways are required for probiotic protection in colitis [94].

Interaction with Calcium

GM is associated with the digestion and availability for ab-
sorption of various ingested nutrients including dietary carbo-
hydrates, proteins, plant polyphenols, bile acids, and vitamins,
and is therefore a key factor in shaping the biochemical profile
of the diet [95]. This interaction between GM and prebiotics
promotes calcium absorption via various mechanisms: first,
the reduction in bowel content pH increases calcium bioavail-
ability [73, 96]. Second, calcium surface absorption is in-
creased, since cellular uptake of SCFAs increases intestinal
cell proliferation resulting in increased intestinal crypt depth
and greater cell density and blood flow in the villi [73, 97].
Last, SCFAs may signal for greater gene expression of the
intracellular calcium transporters [60]. Higher calcium absorp-
tion decreases parathyroid hormone (PTH) production and
may thereby lower bone resorption [98].

In addition, studies in animals suggest that calcium from
the diet or supplements might interfere with gut microbiota,
and partly explains the beneficial effects of calcium on body
weight/fat loss [99]. Calcium supplementation in dietary
obese animals has a prebiotic-like effect which modulates
GM composition in favor of potentially beneficial bacteria in
the gut, and in turn may modulate systemic low-grade inflam-
mation, as demonstrated by the lower plasma endotoxin LPS
in host animals receiving calcium supplements compared with
controls [100].

Interaction with Other Bone Regulatory Pathways

Interactions between GM and several bone regulatory path-
ways, including PTH, IGF-I, or serotonin, have also been
reported. Bone loss associated with primary hyperparathy-
roidism involves microbial-dependent expansion of intestinal
TNFα+ T cells and Th17 cells [101]. In addition, butyrate
production by gut luminal microbiota is required for the bone
anabolic activity of PTH [102]. Serum IGF-I levels in mice are
increased in response to microbial colonization, while it de-
creases after antibiotic treatment. Supplementation of
antibiotic-treated mice with SCFAs restores IGF-I concentra-
tions and bonemass to levels observed in control mice [17]. In
GF animals, serotonin, known to reduce bone formation se-
cretion, is decreased in relation to lower tryptophan
hydroxylase-1 expression in the large intestine [103].

Conclusion

There is compelling evidence supporting that probiotics may
improve bone health. In animal models, probiotics prevent
bone loss associated with estrogen deficiency, diabetes or glu-
cocorticoid treatments, bymodulating both bone resorption by
osteoclasts and bone formation by osteoblast in relation with
GM composition and metabolism. In humans, they interfere
with 25-hydroxyvitamin D levels, and calcium intake and ab-
sorption, and slightly decrease bone loss in elderly postmen-
opausal women, in a quite similar magnitude as observed with
calcium and vitamin D supplements. A dietary source of
probiotics is fermented dairy products which benefits calcium
balance and prevents secondary hyperparathyroidism, age-
related increase of bone resorption, and age-related bone loss.
However, some important issues remain to be elucidated. In
some models, the response to probiotics is sex specific and
seems more readily detectable in subjects with high bone turn-
over like children or adolescents or early postmenopausal
women [23, 46]. The types and doses of probiotics, in terms
of efficacy and tolerance, the time and duration of administra-
tion, and the offset of the effects upon probiotics discontinu-
ation need still to be defined. Finally, there is currently no data
demonstrating whether probiotics may reduce fracture risk.
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With this respect, genetic background, sex, immune status,
age, diet, living conditions, geography, and drugs are likely
important confounding factors in evaluating the effects of
probiotics on bone health. Additional studies are required to
determine whether probiotics or any other interventions
targeting GM and its metabolites such as prebiotics may be
adjuvant treatment to calcium and vitamin D supplements,
anti-osteoporotic drugs and also to promotion of a balance diet
and regular physical activity in the general management of
patients with bone fragility.
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