SYSTEMATIC REVIEW

Dynapenic obesity and all-Cause mortality: A systematic review and Meta-analysis of prospective cohort studies

Amirabbas Nikkhah¹ · Farshad Sharifi² · Pouya Ebrahimi³ · Marjan Rahimi⁴ · Elaheh Karimi³ · Amirhosein Kefayat^{1,5} · Moloud Payab⁴ · Bagher Larijani¹ · Mahbube Ebrahimpur²

Received: 1 January 2025 / Revised: 4 September 2025 / Accepted: 7 September 2025 © The Author(s) 2025

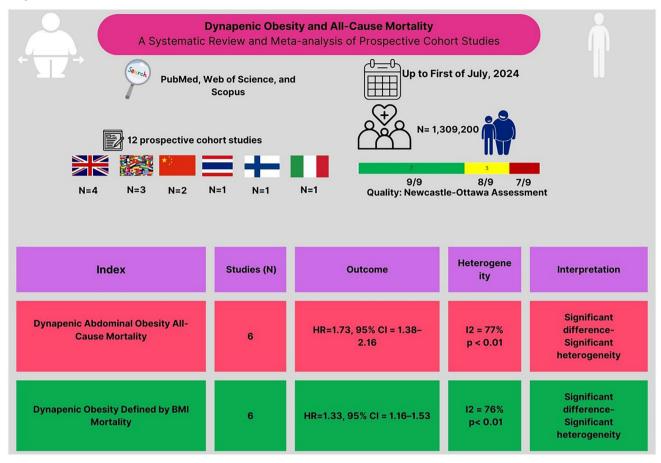
Abstract

Background Dynapenia and obesity have been independently shown to be associated with an increased risk of all-cause mortality. However, the association between dynapenic obesity [defined by waist circumference (WC) or body mass index (BMI)] and all-cause mortality is not yet fully elucidated.

Methods We systematically searched databases, including PubMed, Web of Science, and Scopus, to explore the relationship between dynapenic obesity and all-cause mortality up to February 2024. Pooled hazard ratios (HRs) for all-cause mortality were calculated for individuals with dynapenic abdominal obesity (DAO) and dynapenic obesity defined by BMI relative to a healthy reference group.

Results Six studies examining DAO and six assessing dynapenic obesity defined by BMI were included. Individuals with DAO had a significantly higher risk of all-cause mortality compared to those without dynapenia and with normal WC. The pooled HR for DAO versus non-dynapenic, non-abdominal obese individuals was 1.73 (95% CI=1.38–2.16), with substantial heterogeneity across studies (I2=77%, p<0.01). Similarly, individuals with dynapenic obesity, as defined by BMI, showed an elevated mortality risk compared to those with normal BMI, with an HR of 1.33 (95% CI=1.16–1.53). High heterogeneity was observed across these studies (I2=76%, p<0.01).

Conclusion This meta-analysis reveals a significant association between dynapenic obesity, whether defined by WC or BMI, with an increased risk of all-cause mortality. Further studies are needed to explore the underlying mechanisms driving this relationship.


- ☑ Moloud Payab mpayab@tums.ac.ir
- ☐ Mahbube Ebrahimpur m-ebrahimpur@tums.ac.ir

Published online: 07 October 2025

- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute,, Tehran University of Medical Sciences, Tehran, Iran
- ² Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Non-communicable Disease Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK

Graphical Abstract

Keywords Muscle strength · Obesity · Body mass index · Waist circumference · Mortality · Meta-analysis

Abbreviations

BMI Body Mass Index
CI Confidence Interval
DAO Dynapenic Abdomina

DAO Dynapenic Abdominal Obesity HDL High-Density Lipoprotein

HR Hazard Ratio

NOS Newcastle-Ottawa Assessment Scale PRISMA Preferred Reporting Items for Systematic

Reviews and Meta-analyses

SO Sarcopenic Obesity
WC Waist Circumference
WHO World Health Organization

Introduction

The global prevalence of overweight and obesity has been on the rise over the past decades [1]. According to the World Health Organization (WHO), the number of overweight adults has surpassed 2.5 billion globally, while over 890 million of these are living with obesity, defined as having a body mass index (BMI) greater than or equal to 30 kg/m2 [2]. Obesity stands as a substantial public health concern since it amplifies the susceptibility to conditions such as type 2 diabetes mellitus [3], various forms of malignancy [4, 5], dyslipidemia [6], and coronary heart disease [7], which poses an elevated risk of all-cause mortality [8].

Current studies suggest that waist circumference (WC), the indicator of abdominal fat, may surpass BMI in significance when determining adverse health implications linked to obesity in older adults [9]. As individuals age, a notable shift in body composition occurs, characterized by increased abdominal and intramuscular fat and a concurrent decline in lean mass [10]. In addition, aging is associated with loss of muscle strength, known as dynapenia, which occurs at a more accelerated rate than the loss of muscle mass [11]. The decline in muscle strength is more pronounced associated with adverse health outcomes, such as physical disability and mortality, than the loss of muscle mass [12]. The interplay between increased visceral adiposity and reduced

muscle strength results in the phenotype termed dynapenic abdominal obesity (DAO) [13]. Visceral fat elevates proinflammatory cytokines, potentially playing a role in the onset and advancement of dynapenia [14, 15]. Similarly, dynapenia reduces physical activity levels, potentially raising the likelihood of abdominal obesity [16].

Both dynapenia and obesity have been independently associated with an increased risk of mortality [17, 18]. The metabolic risks Linked to obesity include insulin resistance, type 2 diabetes mellitus, and dyslipidemia [19–21]. Likewise, individuals with dynapenia face an increased risk of low HDL cholesterol [22], hypertriglyceridemia [22], and diabetes mellitus [23], proposing dynapenia and obesity as potential predictors of mortality.

When these two factors converge as dynapenic obesity, a significant risk factor emerges. This combination is associated with a range of adverse health consequences, including falls, reduced walking speed, metabolic changes, elevated cardiovascular risk, hospitalization, and multimorbidity [24]. The presence of multiple risk factors for mortality in these individuals may predict a potential elevation in their overall risk of mortality.

While both dynapenia and obesity have been independently linked to increased risk of mortality, the association between dynapenic obesity and all-cause mortality is not yet fully elucidated. Hence, a comprehensive systematic review and meta-analysis explored the association between dynapenic obesity and all-cause mortality.

Methods

Search strategy

A systematic search was conducted across PubMed, Web of Science, and Scopus to identify all relevant articles examining the association between low muscle strength and obesity and all-cause mortality up to February 2024. The details of the search strategies are provided in **Supplementary File 1**. Furthermore, we manually searched the reference lists of the retrieved studies to identify any additional potentially relevant articles.

Eligibility criteria and selection of studies

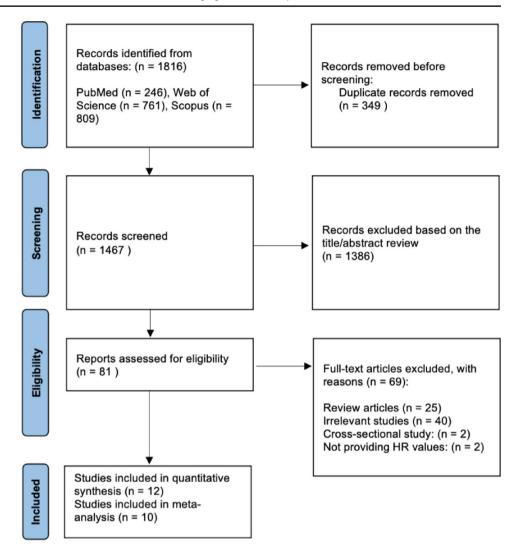
Two independent researchers screened articles based on the most relevant titles and abstracts. Subsequently, they reviewed the full text of retrieved publications, and pertinent studies were selected according to inclusion and exclusion criteria. The inclusion criteria comprised: [1] prospective cohort studies [2], studies reporting relative risk ratios (RRs) or hazard ratios (HRs) along with corresponding 95% confidence intervals (CIs) [3], exposure was dynapenic obese adults and dynapenic obese older adults, and [4] the outcome was all-cause mortality. Exclusion criteria encompassed [1] irrelevant types of studies, including review articles, editorials, commentaries, or studies lacking original data [2], studies lacking a clear definition of low muscle strength [3], studies investigating specific causes of mortality, and [4] studies written in languages other than English.

The meta-analysis was conducted and reported following the guidelines specified in the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) [25]. The PRISMA flow diagram illustrates the study selection process Fig. 1

Data extraction

Two authors independently conducted data extraction. Discrepancies were resolved through discussion until a consensus was reached. Information extracted from the full-text articles included the first author's surname, publication date, country of origin, participant characteristics (such as sample size, age, and sex distribution), duration of follow-up, the definition of low muscle strength and obesity, adjustments made, and outcomes of interest.

Risk of bias assessment


Two investigators evaluated the quality of eligible studies using the Newcastle-Ottawa Assessment Scale (NOS) [26]. Each study was assessed based on three main perspectives: selection (0–4 points), comparability (0–2 points), and outcome (0–3 points), resulting in a score ranging from 0 to 9 points.

Statistical analysis

In this meta-analysis, we applied pooled HRs with their respective 95% CIs to assess the association between dynapenic obesity and all-cause mortality. When studies provided separate data for men and women, we calculated a within-study summary estimate using fixed-effect metaanalysis. Similarly, a summary estimate was computed for studies that reported associations categorized by age or BMI. In cases where studies provided multiple multivariableadjusted HRs, we selected the most fully adjusted estimate to reduce confounding effects. The random-effects model was employed to compute the pooled HR, considering the heterogeneity among studies and their corresponding effect sizes [27]. We assessed heterogeneity among included studies using the Cochrane Q test and the I2 statistics [28, 29]. A P-value < 0.10 for the Q statistics indicated statistically significant heterogeneity, and I2 values of 0%, 25%, 50%, and

Fig. 1 Flow Diagram of the Study Search and Selection Process

75% represented no, low, moderate, and high heterogeneity, respectively [29]. Two authors independently used STATA version 14.0 (Stata Corp, College Station, Texas, USA) and R for data analysis. A two-sided P-value of < 0.05 was considered statistically significant (except for the heterogeneity and Egger's regression tests).

Results

Study selection

A search of online databases resulted in a total of 1816 articles. After eliminating duplicate entries, a total of 1467 distinct records were retained. Following a review of titles and abstracts, 1386 records were excluded. Subsequently, 81 full-text articles were assessed for eligibility, leading to the exclusion of 69 articles. Reasons for exclusion included 25 review articles, 40 studies irrelevant to the topic of sarcopenia, two cross-sectional studies, and studies for not providing HR values. Ultimately, 12 prospective cohort studies were included in the meta-analysis from 10 articles [30–39]. Two articles [34, 37] used both definitions of obesity (BMI and WC). Figure 1 depicts the process of selecting articles included in this meta-analysis.

Characteristics of included studies

Our meta-analysis incorporated twelve prospective cohort studies, encompassing a combined participant pool of 1,309,200 individuals. Among the 12 studies, four were conducted in the UK [32-34], three were multinational [37, 39], two were in Italy [35, 36], one was in China [31], one was in Thailand [30], and one was in Finland [38]. The mean duration of follow-up ranged from 5.1 to 33 years (Table 1). Six studies employed WC as the criterion for defining obesity [31, 34–37, 39], whereas six studies used BMI to define obese individuals [30, 32–34, 37, 38]. Eleven studies utilized low hand grip strength to identify dynapenic

Author	Year	Setting	Duration of follow-up	Sample size	Sex	Age range (at baseline)	Dynapenia criteria	Obesity criteria	Adjustments	Out- come
Chen et al. [31]	2023	China	7	3704	Mixed	≥60	Handgrip strength (<28 kg for men and <18 kg for women)	WC (≥90 cm for men and ≥80 cm for women)	Not available	All- cause mor- tality
Sääksjärvi et al. I [37]	2023	Finland, USA, and Netherland	9.1 for H200, 12.4 for HABC, 10.4 for LASA	4612	Mixed	≥70	Handgrip strength (<27 kg for men and <16 kg for women)	BMI≥30 kg/m2	Age, sex, marital status, education, race, physical activity, alcohol consumption, smoking, and base- line diseases	All- cause mor- tality
Sääksjärvi et al. II [37]	2023	Finland, USA, and Netherland	9.1 for H200, 12.4 for HABC, 10.4 for LASA	4612	Mixed	≥70	Handgrip strength (<27 kg for men and <16 kg for women)	WC (≥ 102 cm for men and ≥ 88 cm for women)	Age, sex, marital status, education, race, physical activity, alcohol consumption, smoking, and base- line diseases	All- cause mor- tality
Charatcharoenwitthaya et al. [30]	2022	Thailand	8.5	19,818	Mixed	≥18	Handgrip strength (<28 kg for men and <18 kg for women)	BMI≥25 kg/m2	Age, current smoking, alcohol intake, regular exercise, Charlson comorbidity index, and hyperglycemia/diabetes	All- cause mor- tality
Farmer et al. [32]	2019	United Kingdom	5.1	452,931	Mixed	40–69	Handgrip strength (<30 kg for men and <20 kg for women)	BMI≥30 kg/m2	Not available	All- cause mor- tality
Rossi et al. [35]	2017	Italy	11	846	Mixed	65–95	Handgrip strength (<33 kg for men and <19 kg for women)	WC (>99 cm for men and >95 cm for women)	Age, sex, smoking habit, education, medications, diabetes, conges- tive heart failure, stroke, chronic obstructive pul- monary disease, and coronary heart disease	All- cause mor- tality
da Silva Alexandre et al. [39]	2017	United Kingdom and Brazil	10	6173	Mixed	≥60	Handgrip strength (<26 kg for men and <16 kg for women)	WC (>102 cm for men and >88 cm for women)	All socioeconomic and behavioral characteristics, clinical conditions, disability, and BMI	All- cause mor- tality
Hamer et al. [33]	2017	United Kingdom	8	6864	Mixed	66.2±9.5	Handgrip strength (<35.3 kg for men and <19.6 kg for women)	BMI≥30 kg/m2	Age, sex, physical activity, smoking, wealth, depressive symptoms, and chronic illnesses	All- cause mor- tality

Author	Year	Setting	Duration of follow-up	Sample size	Sex	Age range (at baseline)	Dynapenia criteria	Obesity criteria	Adjustments	Out- come
Kim et al. I [34]	2017	United Kingdom	7	403,199	Mixed	40–69	Handgrip strength < 27.7 kg	BMI≥30 kg/m2	Ethnicity, smoking status, employment, Townsend Deprivation Index, statin use, hormone replacement therapy (women only), alcohol consumption, processed/red meat consumption, resting pulse rate, and moderate-to-vigorous physical activity time	All- cause mor- tality
Kim et al. II [34]	2017	United Kingdom	7	403,199	Mixed	40–69	Handgrip strength < 27.7 kg	WC (≥ 102 cm for men and ≥ 88 cm for women)	Ethnicity, smoking status, employment, Townsend Deprivation Index, statin use, hormone replacement therapy (women only), alcohol consumption, processed/red meat consumption, resting pulse rate, and moderate-to-vigorous physical activity time	All- cause mor- tality
Rossi et al. [36]	2015	Italy	10	262	Mixed	66–78	Leg muscle strength (<15.33 kg for men and <8.33 kg for women)	WC (>100 cm for men and >87 cm for women)	Age, gender, disability at baseline, low income, actual or past smoking, high alcohol intake, fibrinogen, vitamin D3 level, hypertension, diabetes, hypercholesterolemia, COPD, chronic heart failure, myocardial infarction and stroke	All- cause mor- tality
Stenholm et al. [38]	2014	Finland	33	2980	Mixed	≥5-	Handgrip strength < 42 kp for men 50–69 and < 28 kp for men ≥ 70; Handgrip strength < 23 kp for women 50–69 and < 18 kp for women ≥ 70	BMI≥30 kg/m2	Age, sex, education, smoking, alcohol use, physical activity, hypertension, cardiovascular disease, diabetes and cancer	All-cause mortality

Fig. 2 Forest Plots Demonstrating the Association Between Dynapenic Abdominal Obesity and Increased Risk of All-Cause Mortality

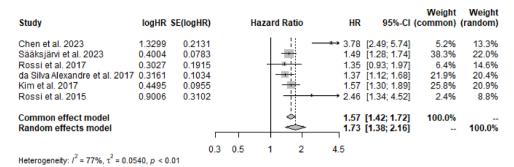
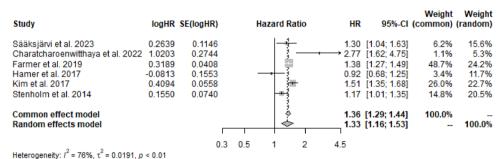
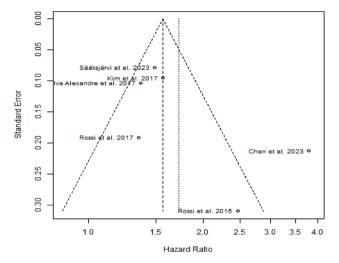



Fig. 3 Forest Plots Demonstrating the Association Between Dynapenic Obesity Defined by BMI and Increased Risk of All-Cause Mortality

individuals [30–35, 37–39], while only one study used low leg muscle strength to characterize dynapenia [36].

Quality assessment

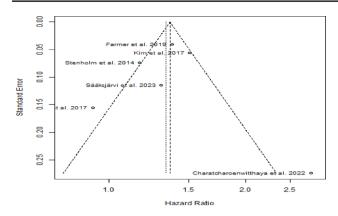

Supplementary File 2 comprehensively describes the methodological quality assessment using NOS. Among the studies, 7 achieved 9 points [30, 33, 35–38], 3 attained 8 points [34, 39], and 2 scored 7 points [31, 32]. The average score is greater than 8 points, indicating high research quality in this meta-analysis.

Dynapenic abdominal obesity mortality

Six prospective cohort studies investigated the correlation between DAO and all-cause mortality in adults [31, 34–37, 39]. We employed a random-effects model to calculate the pooled HR values. As illustrated in Fig. 2, individuals with DAO exhibited a significantly heightened risk of all-cause mortality compared to healthy participants (the reference group). The pooled HR for all-cause mortality in DAO versus non-dynapenic, non-abdominal obese individuals was 1.73 (95% CI=1.38–2.16), with high heterogeneity observed across these studies (12=77%, p<0.01).

Dynapenic obesity defined by BMI mortality

We included six prospective cohort studies exploring the relationship between dynapenic obesity (defined by BMI) and all-cause mortality [30, 32–34, 37, 38]. A random-effects model was utilized to calculate the pooled HR values. Figure 3 shows that individuals with dynapenic obesity


Fig. 4 Funnel Plot Demonstrating the Symmetrical Distribution of Studies Investigating Association Between Dynapenic Obesity Defined by BMI and Increased Risk of All-Cause Mortality

measured by BMI show a significantly increased risk of all-cause mortality compared to healthy individuals. The pooled HR for all-cause mortality in dynapenic obesity measured by BMI versus non-dynapenic non-obese individuals was 1.33 (95% CI=1.16-1.53), with high heterogeneity observed across these studies (I2=76%, p<0.01).

Publication bias

We assessed the presence of publication bias in the metaanalysis using the funnel plots presented in Figs. 4 and 5. The plots around the central effect estimate revealed a

Fig. 5 Funnel Plot Demonstrating the Symmetrical Distribution of Studies Investigating Association Between Dynapenic Obesity Defined by BMI and Increased Risk of All-Cause Mortality

relatively symmetrical distribution of studies, indicating a minimal likelihood of publication bias.

Discussion

The growing prevalence of overweight and obesity has become a global health concern, with substantial consequences for morbidity and mortality [40]. This meta-analysis explored the association between two key factors -low muscle strength and obesity- and their combined impact on all-cause mortality. The results showed a significant association between dynapenic obesity and heightened all-cause mortality risk, with both WC and BMI serving as indicators. The results of this meta-analysis revealed that those with DAO have a significantly increased risk of mortality, 1.73 times greater, compared to those without both conditions. Additionally, our research indicated that dynapenic individuals with obesity (defined as a BMI of ≥ 25 or 30) have a statistically significant 1.33 times higher risk of mortality compared to those without dynapenia and with a normal BMI. This meta-analysis marks the inaugural investigation into the correlation between dynapenic obesity and the risk of all-cause mortality, drawing upon prospective cohort studies. These studies encompassed diverse geographical locations and varied follow-up durations and employed two distinct definitions of obesity. The observed heterogeneity across studies warrants careful consideration and highlights the need for further research to explore potential contributing factors. Factors such as variations in age, sex, ethnicity, underlying health conditions, measurement techniques for muscle strength and obesity, and differences in followup durations may have contributed to the heterogeneity. Subgroup analyses based on gender, setting, and different definitions of low muscle strength and obesity will provide insights into potential sources of heterogeneity. However,

additional exploration is warranted to elucidate underlying mechanisms.

The findings of this meta-analysis underscore the significant association between DAO and dynapenic obesity measured by BMI and heightened mortality risk. In line with these findings, previous studies have consistently demonstrated both dynapenia and obesity are independently associated with increased risk for all-cause mortality. For instance, meta-analyses by Flegal et al. [41] and Aune et al. [42] have demonstrated a significant association between obesity, as measured by BMI, and heightened all-cause mortality. Flegal et al. reported an overall summary HR of 1.18, indicating a substantial increase in mortality risk among individuals classified as obese compared to those with normal weight BMI categories. Aune et al. found that for every 5-unit increment in BMI, the relative risk for all-cause mortality increased by 1.05, further emphasizing the detrimental impact of obesity on mortality outcomes. Also, Silva et al. [17] demonstrated that adults with dynapenia had a higher risk for mortality with an HR of 1.29 (95% CI: 0.71-2.34).

Moreover, investigations into specific types of obesity, such as sarcopenic obesity (SO), have also revealed noteworthy associations with increased mortality risk. Studies conducted by Zhang et al. [43] and Tian et al. [44] have reported significant links between SO and elevated allcause mortality rates. Zhang et al. observed a pooled HR of 1.21 for SO, indicating a substantially higher mortality risk among adult individuals with this condition. Similarly, Tian et al. found a pooled HR of 1.24 for SO, further underscoring the increased mortality risk associated with this phenotype compared to healthy subjects. Our meta-analysis adds to the existing body of evidence by specifically investigating the combined effect of dynapenia and obesity on mortality risk. Our findings support the notion that both DAO and dynapenic obesity measured by BMI presents an even more significant risk factor for mortality compared to obesity alone.

Delving deeper into the underlying mechanisms linking DAO and dynapenic obesity measured by BMI to mortality reveals a complex interplay of factors that merit further investigation. One potential mechanism contributing to the heightened mortality risk observed in individuals with obesity is increased inflammation [45]. WC has been suggested as a proxy measure for regional fat distribution due to its simplicity in measurement and its strong correlation with visceral and total fat, as assessed by computerized tomography [46]. Visceral fat, a characteristic feature of abdominal obesity, releases pro-inflammatory cytokines, which contribute to the development of insulin resistance, hypertriglyceridemia, dyslipidemia, decreased muscle strength, and endothelial dysfunction, all of which are established risk factors for cardiovascular disease [47–50]. This chronic

inflammatory state induced by visceral adiposity likely amplifies the mortality risk through its detrimental effects on cardiovascular health [51, 52]. Similarly, adults with dynapenia are at a higher risk for developing metabolic diseases, such as Lipid disorders, metabolic syndrome, or type 2 diabetes [53]. Individuals with dynapenic obesity exhibit higher levels of low HDL-cholesterol, hypertriglyceridemia, and metabolic syndrome compared to non-dynapenic/nonobese and dynapenic-only groups, underscoring the presence of multiple mortality risk factors in these individuals, thereby heightening their risk of mortality [54]. Moreover, impaired physical function emerges as another critical pathway linking dynapenic obesity to mortality [55]. Reduced muscle strength, a hallmark of dynapenia, not only compromises mobility but also undermines functional independence, predisposing individuals to an elevated risk of falls, accidents, and subsequent hospitalizations [56]. The compromised physical function resulting from dynapenia exacerbates the risk of adverse outcomes, including mortality, highlighting the importance of preserving muscle strength in older adults to mitigate mortality risk [57]. Additionally, poor nutritional status emerges as a significant contributing factor to mortality risk in individuals with dynapenic obesity [58]. Dynapenia may lead to difficulties in maintaining adequate nutritional intake, whether due to challenges in chewing, swallowing, or preparing nutritious meals [59]. This can result in malnutrition, further accelerating the progression of dynapenia and exacerbating the mortality risk associated with dynapenic obesity.

The findings from this meta-analysis have significant implications for clinical practice and public health interventions. Clinicians should recognize the synergistic impact of dynapenia and obesity on mortality risk. Screening for both factors and comprehensive assessments of metabolic health may aid in identifying individuals at heightened risk and facilitate targeted interventions to mitigate adverse outcomes. Public health initiatives to combat obesity should adopt a multifaceted approach that addresses weight management and preserving muscle strength and functionality. Promoting physical activity, particularly resistance training, can help mitigate muscle loss and improve overall strength, reducing the risk of dynapenia. Additionally, strategies to promote healthy dietary habits and reduce central adiposity are essential for mitigating the risk of DAO and its associated complications.

To our knowledge, this is the first meta-analysis of prospective cohort studies investigating the association between dynapenic obesity and risk of all-cause mortality. However, there are several Limitations to acknowledge in this meta-analysis. Firstly, certain articles included in this study did not categorize patients according to the standard WHO BMI classification. Some studies combined normal

weight and underweight individuals or overweight and obese individuals, which could impact the reliability of the results. Secondly, we Limited our analysis to Literature published exclusively in English. As a result, we may have unintentionally excluded important studies published in other languages, thus introducing bias into our findings. Furthermore, whereas the HRs for the dynapenic obese group were obtained using the fully adjusted model, the confounding factors exhibited significant variation. Additionally, the duration of the follow-up period showed variation among different research, spanning from 5 to 33 years. It is vital to consider these Limitations when analyzing the findings of the current investigation. However, these Limitations do not diminish the significance of our study, as it boasts several strengths. Firstly, we thoroughly searched multiple databases using a sensitive search strategy. Secondly, all original studies included in the analysis were prospective in design, minimizing potential bias. Thirdly, we employed a rigorous study selection and quality assessment process, which was duplicated. Moreover, due to the substantial sample size, our meta-analysis possessed sufficient statistical power to explore the causal relationship between dynapenic obesity and mortality. Lastly, we utilized adjusted HR with 95% CI from the included studies to derive the pooled estimate, thereby mitigating the influence of confounding factors on the association.

Conclusion

We found that individuals with DAO and dynapenic individuals with obesity (defined by BMI) are associated with a significantly increased risk of all-cause mortality compared to those without dynapenia and with a normal WC or BMI. Further research is warranted to explore potential mechanisms underlying the observed association and to inform targeted interventions to reduce mortality risk in individuals with dynapenic obesity.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s40520-0 25-03201-6.

Acknowledgements Not applicable.

Author contributions Study conception and design: A.N, B, M.E, and M.P; data extraction, analysis, and interpretation of results, and manuscript drafting: F.S, P.E, M.R, E.K, and A.K. All authors have reviewed the final manuscript and have given their approval for submission.

Funding The authors received no financial support for this article's research, authorship, and publication.

Data availability The datasets analyzed during the current study are available from the corresponding author upon reasonable request.

Declarations

Conflict of interest The authors declared no potential conflicts of interest regarding this article's research, authorship, and/or publication.

Consent for publication Not applicable.

Ethics Not applicable.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Jaacks LM et al (2019) The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol 7(3):231-240
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet. 2024 Mar 16:403(10431):1027-1050. https://doi.org/10.1016/S0140-6736(23)02750-2
- Ruze R et al (2023) Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne) 14:1161521
- Sohn W et al (2021) Obesity and the risk of primary liver cancer: a systematic review and meta-analysis. Clin Mol Hepatol 27(1):157-174
- Foong KW, Bolton H (2017) Obesity and ovarian cancer risk: a systematic review. Post Reprod Health 23(4):183-198
- Vekic J et al (2019) Obesity and dyslipidemia. Metabolism
- Katta N et al (2021) Obesity and coronary heart disease: epidemiology, pathology, and coronary artery imaging. Curr Probl Cardiol 46(3):100655
- Global BMIMC et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 388(10046):776-786
- Lv D, Shen S, Chen X (2022) Association between dynapenic abdominal obesity and fall risk in older adults. Clin Interv Aging 17:439-445
- 10. Máximo RO et al (2022) Combination of dynapenia and abdominal obesity affects long-term physical performance trajectories in older adults: sex differences. Am J Clin Nutr 115(5):1290-1299
- 11. Clark BC, Manini TM (2008) Sarcopenia =/= dvnapenia. J Gerontol Biol Sci Med Sci 63(8):829-834
- 12. Newman AB et al (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61(1):72-77

- 13. Sénéchal M, Dionne IJ, Brochu M (2012) Dynapenic abdominal obesity and metabolic risk factors in adults 50 years of age and older. J Aging Health 24(5):812-826
- 14. Nascimento CMC et al (2021) Are body fat and inflammatory markers independently associated with age-related muscle changes? Clin Nutr 40(4):2009-2015
- 15. Aghili SMM et al (2021) Obesity in COVID-19 era, implications for mechanisms, comorbidities, and prognosis: a review and meta-analysis. Int J Obes (Lond) 45(5):998-1016
- 16. Tatangelo T et al (2022) Exploring the association between handgrip, lower limb muscle strength, and physical function in older adults: a narrative review. Exp Gerontol 167:111902
- 17. Silva RR et al (2022) Dynapenia in all-cause mortality and its relationship with sedentary behavior in community-dwelling older adults. Sports Med Health Sci 4(4):253-259
- Moura, L.d.A.N.e.; Pagotto, V.; Camargo Pereira, C.; de Oliveira, C.; Silveira, E.A. Does Abdominal Obesity Increase All-Cause, Cardiovascular Disease, and Cancer Mortality Risks in Older Adults? A 10-Year Follow-Up Analysis. Nutrients 2022, 14, 4315. https://doi.org/10.3390/nu14204315Moura L et al (2022) Does abdominal obesity increase all-cause, cardiovascular disease, and cancer mortality risks in older adults?? A 10-year follow-up analysis. Nutrients. https://doi.org/10.3390/nu14204315
- 19. Klop B, Elte JW, Cabezas MC (2013) Dyslipidemia in obesity: mechanisms and potential targets. Nutrients 5(4):1218-1240
- 20. Hasani-Ranjbar S et al (2023) Comparison of Framingham cardiovascular risk criteria and ASCVD score in Iranian obese patients. Iran J Public Health 52(2):420-426
- 21. Payab M, Hasani-Ranjbar S, Larijani B (2014) Whether all obese subjects both in metabolic groups and non-metabolic groups should be treated or not. J Diabetes Metab Disord 13(1):21
- 22. Li R et al (2018) Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc 50(3):458-467
- 23. Mori H et al (2021) High prevalence and clinical impact of dynapenia and sarcopenia in Japanese patients with type 1 and type 2 diabetes: findings from the impact of diabetes mellitus on dynapenia study. J Diabetes Investig 12(6):1050-1059
- Veronese N et al (2023) Dynapenic abdominal obesity and incident multimorbidity: findings from the English longitudinal study on ageing. Aging Clin Exp Res 35(8):1671-1678
- 25. Liberati A et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700
- Stang A (2010) Critical evaluation of the Newcastle-ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603-605
- 27. DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28(2):105-114
- Cochran WG (1954) The combination of estimates from different experiments. Biometrics 10(1):101-129
- 29. Higgins JP et al (2003) Measuring inconsistency in meta-analyses. BMJ 327(7414):557-560
- Charatcharoenwitthaya P, Karaketklang K, Aekplakorn W (2022) Muscle strength, but not body mass index, is associated with mortality in patients with non-alcoholic fatty liver disease. J Cachexia Sarcopenia Muscle 13(5):2393-2404
- 31. Chen Z, Ho M, Chau PH (2023) Gender-specific moderating role of abdominal obesity in the relationship between handgrip strength and cognitive impairment. Clin Nutr 42(12):2546–2553
- 32. Farmer RE et al (2019) Associations between measures of sarcopenic obesity and risk of cardiovascular disease and mortality: A cohort study and Mendelian randomization analysis using the UK biobank. J Am Heart Assoc 8(13):e011638

- 33. Hamer M, O'Donovan G (2017) Sarcopenic obesity, weight loss, and mortality: the English longitudinal study of ageing. Am J Clin Nutr 106(1):125–129
- 34. Kim Y et al (2017) Independent and joint associations of grip strength and adiposity with all-cause and cardiovascular disease mortality in 403,199 adults: the UK biobank study. Am J Clin Nutr 106(3):773–782
- Rossi AP et al (2017) Dynapenic abdominal obesity as a predictor of worsening disability, hospitalization, and mortality in older adults: results from the InCHIANTI study. The Journals of Gerontology: Series A 72(8):1098–1104
- Rossi AP et al (2016) Dynapenic abdominal obesity as predictor of mortality and disability worsening in older adults: a 10-year prospective study. Clin Nutr 35(1):199–204
- Sääksjärvi K et al (2023) Probable sarcopenia, obesity, and risk of all-cause mortality: a pooled analysis of 4,612 participants. Gerontology 69(6):706–715
- 38. Stenholm S et al (2014) Obesity and muscle strength as long-term determinants of all-cause mortality—a 33-year follow-up of the Mini-Finland health examination survey. Int J Obes (Lond) 38(8):1126–1132
- 39. da Silva Alexandre T et al (2018) Dynapenic abdominal obesity increases mortality risk among english and Brazilian older adults: A 10-Year Follow-Up of the ELSA and SABE studies. J Nutr Health Aging 22(1):138–144
- 40. Jura M, Kozak LP (2016) Obesity and related consequences to ageing. Age (Dordr) 38(1):23
- Flegal KM et al (2013) Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA 309(1):71–82
- 42. Aune D et al (2016) BMI and all cause mortality: systematic review and non-linear dose-response meta-analysis of 230 cohort studies with 3.74 million deaths among 30.3 million participants. BMJ 353:i2156
- Zhang X et al (2019) Association of sarcopenic obesity with the risk of all-cause mortality among adults over a broad range of different settings: a updated meta-analysis. BMC Geriatr 19(1):183
- Tian S, Xu Y (2016) Association of sarcopenic obesity with the risk of all-cause mortality: a meta-analysis of prospective cohort studies. Geriatr Gerontol Int 16(2):155–166
- Cox AJ, West NP, Cripps AW (2015) Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3(3):207–215
- Jabłonowska-Lietz B et al (2017) New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-toheight ratio, and metabolic disturbances in the obese. Kardiol Pol 75(11):1185–1191

- Kolb H (2022) Obese visceral fat tissue inflammation: from protective to detrimental? BMC Med 20(1):494
- 48. Amininezhad F et al (2021) Bone characteristics and metabolic phenotypes of obesity in an Iranian elderly population: Bushehr elderly health program (BEHP). Arch Osteoporos 16(1):92
- Payab M et al (2019) Association of anthropometric indices with metabolic phenotypes of obesity in children and adolescents: the CASPIAN-V study. Front Endocrinol (Lausanne) 10:786
- Payab M et al (2022) Metabolomics prospect of obesity and metabolic syndrome; a systematic review. J Diabetes Metab Disord 21(1):889–917
- Karlsson T et al (2019) Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med 25(9):1390–1395
- 52. Ebrahimpur M et al (2024) Evaluation of the prevalence of cardiometabolic disorders (diabetes, hypertension, and hyperlipidemia) diagnosed, undiagnosed, treated, and treatment goal in the elderly: Bushehr elderly health program (BEH). BMC Endocr Disord 24(1):29
- 53. Nishikawa H et al (2021) Dynapenia Rather Than Sarcopenia Is Associated with Metabolic Syndrome in Patients with Chronic Liver Diseases. Diagnostics (Basel), 11(7)
- Ramírez PC et al (2023) Dynapenic abdominal obesity as a risk factor for metabolic syndrome in individual 50 years of age or older: english longitudinal study of ageing. J Nutr Health Aging 27(12):1188–1195
- 55. Dowling L et al (2023) Dynapenic abdominal obesity as a risk factor for falls. J Frailty Aging 12(1):37–42
- da Silva CA et al (2021) Dynapenic abdominal obesity in hospitalized elderly patients with acute myocardial infarction. Exp Gerontol 154:111512
- Orssatto L, Wiest MJ, Diefenthaeler F (2018) Neural and musculotendinous mechanisms underpinning age-related force reductions. Mech Ageing Dev 175:17–23
- Pereira J et al (2023) Dynapenic abdominal obesity is related to cardiovascular risk in older adults with Parkinson's disease: a cross sectional study. Clin Nutr ESPEN 54:288–292
- Mitchell WK et al (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

